File: filters.py

package info (click to toggle)
python-ase 3.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (875 lines) | stat: -rw-r--r-- 32,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
# fmt: off

"""Filters"""
from functools import cached_property
from itertools import product
from warnings import warn

import numpy as np

from ase.calculators.calculator import PropertyNotImplementedError
from ase.stress import full_3x3_to_voigt_6_stress, voigt_6_to_full_3x3_stress
from ase.utils import deprecated
from ase.utils.abc import Optimizable

__all__ = [
    'Filter', 'StrainFilter', 'UnitCellFilter', 'FrechetCellFilter',
    'ExpCellFilter'
]


class OptimizableFilter(Optimizable):
    def __init__(self, filterobj):
        self.filterobj = filterobj

    def get_x(self):
        return self.filterobj.get_positions().ravel()

    def set_x(self, x):
        self.filterobj.set_positions(x.reshape(-1, 3))

    def get_gradient(self):
        return self.filterobj.get_forces().ravel()

    @cached_property
    def _use_force_consistent_energy(self):
        # This boolean is in principle invalidated if the
        # calculator changes.  This can lead to weird things
        # in multi-step optimizations.
        try:
            self.filterobj.get_potential_energy(force_consistent=True)
        except PropertyNotImplementedError:
            return False
        else:
            return True

    def get_value(self):
        force_consistent = self._use_force_consistent_energy
        return self.filterobj.get_potential_energy(
            force_consistent=force_consistent)

    def ndofs(self):
        return 3 * len(self.filterobj)

    def iterimages(self):
        return self.filterobj.iterimages()


class Filter:
    """Subset filter class."""

    def __init__(self, atoms, indices=None, mask=None):
        """Filter atoms.

        This filter can be used to hide degrees of freedom in an Atoms
        object.

        Parameters
        ----------
        indices : list of int
           Indices for those atoms that should remain visible.
        mask : list of bool
           One boolean per atom indicating if the atom should remain
           visible or not.

        If a Trajectory tries to save this object, it will instead
        save the underlying Atoms object.  To prevent this, override
        the iterimages method.
        """

        self.atoms = atoms
        self.constraints = []
        # Make self.info a reference to the underlying atoms' info dictionary.
        self.info = self.atoms.info

        if indices is None and mask is None:
            raise ValueError('Use "indices" or "mask".')
        if indices is not None and mask is not None:
            raise ValueError('Use only one of "indices" and "mask".')

        if mask is not None:
            self.index = np.asarray(mask, bool)
            self.n = self.index.sum()
        else:
            self.index = np.asarray(indices, int)
            self.n = len(self.index)

    def iterimages(self):
        # Present the real atoms object to Trajectory and friends
        return self.atoms.iterimages()

    def get_cell(self):
        """Returns the computational cell.

        The computational cell is the same as for the original system.
        """
        return self.atoms.get_cell()

    def get_pbc(self):
        """Returns the periodic boundary conditions.

        The boundary conditions are the same as for the original system.
        """
        return self.atoms.get_pbc()

    def get_positions(self):
        'Return the positions of the visible atoms.'
        return self.atoms.get_positions()[self.index]

    def set_positions(self, positions, **kwargs):
        'Set the positions of the visible atoms.'
        pos = self.atoms.get_positions()
        pos[self.index] = positions
        self.atoms.set_positions(pos, **kwargs)

    positions = property(get_positions, set_positions,
                         doc='Positions of the atoms')

    def get_momenta(self):
        'Return the momenta of the visible atoms.'
        return self.atoms.get_momenta()[self.index]

    def set_momenta(self, momenta, **kwargs):
        'Set the momenta of the visible atoms.'
        mom = self.atoms.get_momenta()
        mom[self.index] = momenta
        self.atoms.set_momenta(mom, **kwargs)

    def get_atomic_numbers(self):
        'Return the atomic numbers of the visible atoms.'
        return self.atoms.get_atomic_numbers()[self.index]

    def set_atomic_numbers(self, atomic_numbers):
        'Set the atomic numbers of the visible atoms.'
        z = self.atoms.get_atomic_numbers()
        z[self.index] = atomic_numbers
        self.atoms.set_atomic_numbers(z)

    def get_tags(self):
        'Return the tags of the visible atoms.'
        return self.atoms.get_tags()[self.index]

    def set_tags(self, tags):
        'Set the tags of the visible atoms.'
        tg = self.atoms.get_tags()
        tg[self.index] = tags
        self.atoms.set_tags(tg)

    def get_forces(self, *args, **kwargs):
        return self.atoms.get_forces(*args, **kwargs)[self.index]

    def get_stress(self, *args, **kwargs):
        return self.atoms.get_stress(*args, **kwargs)

    def get_stresses(self, *args, **kwargs):
        return self.atoms.get_stresses(*args, **kwargs)[self.index]

    def get_masses(self):
        return self.atoms.get_masses()[self.index]

    def get_potential_energy(self, **kwargs):
        """Calculate potential energy.

        Returns the potential energy of the full system.
        """
        return self.atoms.get_potential_energy(**kwargs)

    def get_chemical_symbols(self):
        return self.atoms.get_chemical_symbols()

    def get_initial_magnetic_moments(self):
        return self.atoms.get_initial_magnetic_moments()

    def get_calculator(self):
        """Returns the calculator.

        WARNING: The calculator is unaware of this filter, and sees a
        different number of atoms.
        """
        return self.atoms.calc

    @property
    def calc(self):
        return self.atoms.calc

    def get_celldisp(self):
        return self.atoms.get_celldisp()

    def has(self, name):
        'Check for existence of array.'
        return self.atoms.has(name)

    def __len__(self):
        'Return the number of movable atoms.'
        return self.n

    def __getitem__(self, i):
        'Return an atom.'
        return self.atoms[self.index[i]]

    def __ase_optimizable__(self):
        return OptimizableFilter(self)


class StrainFilter(Filter):
    """Modify the supercell while keeping the scaled positions fixed.

    Presents the strain of the supercell as the generalized positions,
    and the global stress tensor (times the volume) as the generalized
    force.

    This filter can be used to relax the unit cell until the stress is
    zero.  If MDMin is used for this, the timestep (dt) to be used
    depends on the system size. 0.01/x where x is a typical dimension
    seems like a good choice.

    The stress and strain are presented as 6-vectors, the order of the
    components follow the standard engingeering practice: xx, yy, zz,
    yz, xz, xy.

    """

    def __init__(self, atoms, mask=None, include_ideal_gas=False):
        """Create a filter applying a homogeneous strain to a list of atoms.

        The first argument, atoms, is the atoms object.

        The optional second argument, mask, is a list of six booleans,
        indicating which of the six independent components of the
        strain that are allowed to become non-zero.  It defaults to
        [1,1,1,1,1,1].

        """

        self.strain = np.zeros(6)
        self.include_ideal_gas = include_ideal_gas

        if mask is None:
            mask = np.ones(6)
        else:
            mask = np.array(mask)

        Filter.__init__(self, atoms=atoms, mask=mask)
        self.mask = mask
        self.origcell = atoms.get_cell()

    def get_positions(self):
        return self.strain.reshape((2, 3)).copy()

    def set_positions(self, new):
        new = new.ravel() * self.mask
        eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
                        [0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
                        [0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])

        self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
        self.strain[:] = new

    def get_forces(self, **kwargs):
        stress = self.atoms.get_stress(include_ideal_gas=self.include_ideal_gas)
        return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return 2


class UnitCellFilter(Filter):
    """Modify the supercell and the atom positions. """

    def __init__(self, atoms, mask=None,
                 cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False,
                 orig_cell=None,
                 scalar_pressure=0.0):
        """Create a filter that returns the atomic forces and unit cell
        stresses together, so they can simultaneously be minimized.

        The first argument, atoms, is the atoms object. The optional second
        argument, mask, is a list of booleans, indicating which of the six
        independent components of the strain are relaxed.

        - True = relax to zero
        - False = fixed, ignore this component

        Degrees of freedom are the positions in the original undeformed cell,
        plus the deformation tensor (extra 3 "atoms"). This gives forces
        consistent with numerical derivatives of the potential energy
        with respect to the cell degreees of freedom.

        For full details see:
            E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
            Phys. Rev. B 59, 235 (1999)

        You can still use constraints on the atoms, e.g. FixAtoms, to control
        the relaxation of the atoms.

        >>> # this should be equivalent to the StrainFilter
        >>> atoms = Atoms(...)
        >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
        >>> ucf = UnitCellFilter(atoms)

        You should not attach this UnitCellFilter object to a
        trajectory. Instead, create a trajectory for the atoms, and
        attach it to an optimizer like this:

        >>> atoms = Atoms(...)
        >>> ucf = UnitCellFilter(atoms)
        >>> qn = QuasiNewton(ucf)
        >>> traj = Trajectory('TiO2.traj', 'w', atoms)
        >>> qn.attach(traj)
        >>> qn.run(fmax=0.05)

        Helpful conversion table:

        - 0.05 eV/A^3   = 8 GPA
        - 0.003 eV/A^3  = 0.48 GPa
        - 0.0006 eV/A^3 = 0.096 GPa
        - 0.0003 eV/A^3 = 0.048 GPa
        - 0.0001 eV/A^3 = 0.02 GPa

        Additional optional arguments:

        cell_factor: float (default float(len(atoms)))
            Factor by which deformation gradient is multiplied to put
            it on the same scale as the positions when assembling
            the combined position/cell vector. The stress contribution to
            the forces is scaled down by the same factor. This can be thought
            of as a very simple preconditioners. Default is number of atoms
            which gives approximately the correct scaling.

        hydrostatic_strain: bool (default False)
            Constrain the cell by only allowing hydrostatic deformation.
            The virial tensor is replaced by np.diag([np.trace(virial)]*3).

        constant_volume: bool (default False)
            Project out the diagonal elements of the virial tensor to allow
            relaxations at constant volume, e.g. for mapping out an
            energy-volume curve. Note: this only approximately conserves
            the volume and breaks energy/force consistency so can only be
            used with optimizers that do require do a line minimisation
            (e.g. FIRE).

        scalar_pressure: float (default 0.0)
            Applied pressure to use for enthalpy pV term. As above, this
            breaks energy/force consistency.
        """

        Filter.__init__(self, atoms=atoms, indices=range(len(atoms)))
        self.atoms = atoms
        if orig_cell is None:
            self.orig_cell = atoms.get_cell()
        else:
            self.orig_cell = orig_cell
        self.stress = None

        if mask is None:
            mask = np.ones(6)
        mask = np.asarray(mask)
        if mask.shape == (6,):
            self.mask = voigt_6_to_full_3x3_stress(mask)
        elif mask.shape == (3, 3):
            self.mask = mask
        else:
            raise ValueError('shape of mask should be (3,3) or (6,)')

        if cell_factor is None:
            cell_factor = float(len(atoms))
        self.hydrostatic_strain = hydrostatic_strain
        self.constant_volume = constant_volume
        self.scalar_pressure = scalar_pressure
        self.cell_factor = cell_factor
        self.copy = self.atoms.copy
        self.arrays = self.atoms.arrays

    def deform_grad(self):
        return np.linalg.solve(self.orig_cell, self.atoms.cell).T

    def get_positions(self):
        """
        this returns an array with shape (natoms + 3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor associated with the unit cell,
        scaled by self.cell_factor.
        """

        cur_deform_grad = self.deform_grad()
        natoms = len(self.atoms)
        pos = np.zeros((natoms + 3, 3))
        # UnitCellFilter's positions are the self.atoms.positions but without
        # the applied deformation gradient
        pos[:natoms] = np.linalg.solve(cur_deform_grad,
                                       self.atoms.positions.T).T
        # UnitCellFilter's cell DOFs are the deformation gradient times a
        # scaling factor
        pos[natoms:] = self.cell_factor * cur_deform_grad
        return pos

    def set_positions(self, new, **kwargs):
        """
        new is an array with shape (natoms+3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor used to change the cell shape.

        the new cell is first set from original cell transformed by the new
        deformation gradient, then the positions are set with respect to the
        current cell by transforming them with the same deformation gradient
        """

        natoms = len(self.atoms)
        new_atom_positions = new[:natoms]
        new_deform_grad = new[natoms:] / self.cell_factor
        deform = (new_deform_grad - np.eye(3)).T * self.mask
        # Set the new cell from the original cell and the new
        # deformation gradient.  Both current and final structures should
        # preserve symmetry, so if set_cell() calls FixSymmetry.adjust_cell(),
        # it should be OK
        newcell = self.orig_cell @ (np.eye(3) + deform)

        self.atoms.set_cell(newcell,
                            scale_atoms=True)
        # Set the positions from the ones passed in (which are without the
        # deformation gradient applied) and the new deformation gradient.
        # This should also preserve symmetry, so if set_positions() calls
        # FixSymmetyr.adjust_positions(), it should be OK
        self.atoms.set_positions(new_atom_positions @ (np.eye(3) + deform),
                                 **kwargs)

    def get_potential_energy(self, force_consistent=True):
        """
        returns potential energy including enthalpy PV term.
        """
        atoms_energy = self.atoms.get_potential_energy(
            force_consistent=force_consistent)
        return atoms_energy + self.scalar_pressure * self.atoms.get_volume()

    def get_forces(self, **kwargs):
        """
        returns an array with shape (natoms+3,3) of the atomic forces
        and unit cell stresses.

        the first natoms rows are the forces on the atoms, the last
        three rows are the forces on the unit cell, which are
        computed from the stress tensor.
        """

        stress = self.atoms.get_stress(**kwargs)
        atoms_forces = self.atoms.get_forces(**kwargs)

        volume = self.atoms.get_volume()
        virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
                            np.diag([self.scalar_pressure] * 3))
        cur_deform_grad = self.deform_grad()
        atoms_forces = atoms_forces @ cur_deform_grad
        virial = np.linalg.solve(cur_deform_grad, virial.T).T

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        if self.constant_volume:
            vtr = virial.trace()
            np.fill_diagonal(virial, np.diag(virial) - vtr / 3.0)

        natoms = len(self.atoms)
        forces = np.zeros((natoms + 3, 3))
        forces[:natoms] = atoms_forces
        forces[natoms:] = virial / self.cell_factor

        self.stress = -full_3x3_to_voigt_6_stress(virial) / volume
        return forces

    def get_stress(self):
        raise PropertyNotImplementedError

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return (len(self.atoms) + 3)


class FrechetCellFilter(UnitCellFilter):
    """Modify the supercell and the atom positions."""

    def __init__(self, atoms, mask=None,
                 exp_cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False,
                 scalar_pressure=0.0):
        r"""Create a filter that returns the atomic forces and unit cell
        stresses together, so they can simultaneously be minimized.

        The first argument, atoms, is the atoms object. The optional second
        argument, mask, is a list of booleans, indicating which of the six
        independent components of the strain are relaxed.

        - True = relax to zero
        - False = fixed, ignore this component

        Degrees of freedom are the positions in the original undeformed cell,
        plus the log of the deformation tensor (extra 3 "atoms"). This gives
        forces consistent with numerical derivatives of the potential energy
        with respect to the cell degrees of freedom.

        You can still use constraints on the atoms, e.g. FixAtoms, to control
        the relaxation of the atoms.

        >>> # this should be equivalent to the StrainFilter
        >>> atoms = Atoms(...)
        >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
        >>> ecf = FrechetCellFilter(atoms)

        You should not attach this FrechetCellFilter object to a
        trajectory. Instead, create a trajectory for the atoms, and
        attach it to an optimizer like this:

        >>> atoms = Atoms(...)
        >>> ecf = FrechetCellFilter(atoms)
        >>> qn = QuasiNewton(ecf)
        >>> traj = Trajectory('TiO2.traj', 'w', atoms)
        >>> qn.attach(traj)
        >>> qn.run(fmax=0.05)

        Helpful conversion table:

        - 0.05 eV/A^3   = 8 GPA
        - 0.003 eV/A^3  = 0.48 GPa
        - 0.0006 eV/A^3 = 0.096 GPa
        - 0.0003 eV/A^3 = 0.048 GPa
        - 0.0001 eV/A^3 = 0.02 GPa

        Additional optional arguments:

        exp_cell_factor: float (default float(len(atoms)))
            Scaling factor for cell variables. The cell gradients in
            FrechetCellFilter.get_forces() is divided by exp_cell_factor.
            By default, set the number of atoms. We recommend to set
            an extensive value for this parameter.

        hydrostatic_strain: bool (default False)
            Constrain the cell by only allowing hydrostatic deformation.
            The virial tensor is replaced by np.diag([np.trace(virial)]*3).

        constant_volume: bool (default False)
            Project out the diagonal elements of the virial tensor to allow
            relaxations at constant volume, e.g. for mapping out an
            energy-volume curve.

        scalar_pressure: float (default 0.0)
            Applied pressure to use for enthalpy pV term. As above, this
            breaks energy/force consistency.

        Implementation note:

        The implementation is based on that of Christoph Ortner in JuLIP.jl:
        https://github.com/JuliaMolSim/JuLIP.jl/blob/master/src/expcell.jl

        The initial implementation of ExpCellFilter gave inconsistent gradients
        for cell variables (matrix log of the deformation tensor). If you would
        like to keep the previous behavior, please use ExpCellFilter.

        The derivation of gradients of energy w.r.t positions and the log of the
        deformation tensor is given in
        https://github.com/lan496/lan496.github.io/blob/main/notes/cell_grad.pdf
        """

        Filter.__init__(self, atoms=atoms, indices=range(len(atoms)))
        UnitCellFilter.__init__(self, atoms=atoms, mask=mask,
                                hydrostatic_strain=hydrostatic_strain,
                                constant_volume=constant_volume,
                                scalar_pressure=scalar_pressure)

        # We defer the scipy import to avoid high immediate import overhead
        from scipy.linalg import expm, expm_frechet, logm
        self.expm = expm
        self.logm = logm
        self.expm_frechet = expm_frechet

        # Scaling factor for cell gradients
        if exp_cell_factor is None:
            exp_cell_factor = float(len(atoms))
        self.exp_cell_factor = exp_cell_factor

    def get_positions(self):
        pos = UnitCellFilter.get_positions(self)
        natoms = len(self.atoms)
        pos[natoms:] = self.logm(pos[natoms:]) * self.exp_cell_factor
        return pos

    def set_positions(self, new, **kwargs):
        natoms = len(self.atoms)
        new2 = new.copy()
        new2[natoms:] = self.expm(new[natoms:] / self.exp_cell_factor)
        UnitCellFilter.set_positions(self, new2, **kwargs)

    def get_forces(self, **kwargs):
        # forces on atoms are same as UnitCellFilter, we just
        # need to modify the stress contribution
        stress = self.atoms.get_stress(**kwargs)
        volume = self.atoms.get_volume()
        virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
                            np.diag([self.scalar_pressure] * 3))

        cur_deform_grad = self.deform_grad()
        cur_deform_grad_log = self.logm(cur_deform_grad)

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        # Cell gradient for UnitCellFilter
        ucf_cell_grad = virial @ np.linalg.inv(cur_deform_grad.T)

        # Cell gradient for FrechetCellFilter
        deform_grad_log_force = np.zeros((3, 3))
        for mu, nu in product(range(3), repeat=2):
            dir = np.zeros((3, 3))
            dir[mu, nu] = 1.0
            # Directional derivative of deformation to (mu, nu) strain direction
            expm_der = self.expm_frechet(
                cur_deform_grad_log,
                dir,
                compute_expm=False
            )
            deform_grad_log_force[mu, nu] = np.sum(expm_der * ucf_cell_grad)

        # Cauchy stress used for convergence testing
        convergence_crit_stress = -(virial / volume)
        if self.constant_volume:
            # apply constraint to force
            dglf_trace = deform_grad_log_force.trace()
            np.fill_diagonal(deform_grad_log_force,
                             np.diag(deform_grad_log_force) - dglf_trace / 3.0)
            # apply constraint to Cauchy stress used for convergence testing
            ccs_trace = convergence_crit_stress.trace()
            np.fill_diagonal(convergence_crit_stress,
                             np.diag(convergence_crit_stress) - ccs_trace / 3.0)

        atoms_forces = self.atoms.get_forces(**kwargs)
        atoms_forces = atoms_forces @ cur_deform_grad

        # pack gradients into vector
        natoms = len(self.atoms)
        forces = np.zeros((natoms + 3, 3))
        forces[:natoms] = atoms_forces
        forces[natoms:] = deform_grad_log_force / self.exp_cell_factor
        self.stress = full_3x3_to_voigt_6_stress(convergence_crit_stress)
        return forces


class ExpCellFilter(UnitCellFilter):

    @deprecated(DeprecationWarning(
        'Use FrechetCellFilter for better convergence w.r.t. cell variables.'
    ))
    def __init__(self, atoms, mask=None,
                 cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False,
                 scalar_pressure=0.0):
        r"""Create a filter that returns the atomic forces and unit cell
            stresses together, so they can simultaneously be minimized.

            The first argument, atoms, is the atoms object. The optional second
            argument, mask, is a list of booleans, indicating which of the six
            independent components of the strain are relaxed.

            - True = relax to zero
            - False = fixed, ignore this component

            Degrees of freedom are the positions in the original undeformed
            cell, plus the log of the deformation tensor (extra 3 "atoms"). This
            gives forces consistent with numerical derivatives of the potential
            energy with respect to the cell degrees of freedom.

            For full details see:
                E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
                Phys. Rev. B 59, 235 (1999)

            You can still use constraints on the atoms, e.g. FixAtoms, to
            control the relaxation of the atoms.

            >>> # this should be equivalent to the StrainFilter
            >>> atoms = Atoms(...)
            >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
            >>> ecf = ExpCellFilter(atoms)

            You should not attach this ExpCellFilter object to a
            trajectory. Instead, create a trajectory for the atoms, and
            attach it to an optimizer like this:

            >>> atoms = Atoms(...)
            >>> ecf = ExpCellFilter(atoms)
            >>> qn = QuasiNewton(ecf)
            >>> traj = Trajectory('TiO2.traj', 'w', atoms)
            >>> qn.attach(traj)
            >>> qn.run(fmax=0.05)

            Helpful conversion table:

            - 0.05 eV/A^3   = 8 GPA
            - 0.003 eV/A^3  = 0.48 GPa
            - 0.0006 eV/A^3 = 0.096 GPa
            - 0.0003 eV/A^3 = 0.048 GPa
            - 0.0001 eV/A^3 = 0.02 GPa

            Additional optional arguments:

            cell_factor: (DEPRECATED)
                Retained for backwards compatibility, but no longer used.

            hydrostatic_strain: bool (default False)
                Constrain the cell by only allowing hydrostatic deformation.
                The virial tensor is replaced by np.diag([np.trace(virial)]*3).

            constant_volume: bool (default False)
                Project out the diagonal elements of the virial tensor to allow
                relaxations at constant volume, e.g. for mapping out an
                energy-volume curve.

            scalar_pressure: float (default 0.0)
                Applied pressure to use for enthalpy pV term. As above, this
                breaks energy/force consistency.

        Implementation details:

        The implementation is based on that of Christoph Ortner in JuLIP.jl:
        https://github.com/libAtoms/JuLIP.jl/blob/expcell/src/Constraints.jl#L244

        We decompose the deformation gradient as

            F = exp(U) F0
            x =  F * F0^{-1} z  = exp(U) z

        If we write the energy as a function of U we can transform the
        stress associated with a perturbation V into a derivative using a
        linear map V -> L(U, V).

        \phi( exp(U+tV) (z+tv) ) ~ \phi'(x) . (exp(U) v) + \phi'(x) .
                                                    ( L(U, V) exp(-U) exp(U) z )

        where

                \nabla E(U) : V  =  [S exp(-U)'] : L(U,V)
                                =  L'(U, S exp(-U)') : V
                                =  L(U', S exp(-U)') : V
                                =  L(U, S exp(-U)) : V     (provided U = U')

        where the : operator represents double contraction,
        i.e. A:B = trace(A'B), and

            F = deformation tensor - 3x3 matrix
            F0 = reference deformation tensor - 3x3 matrix, np.eye(3) here
            U = cell degrees of freedom used here - 3x3 matrix
            V = perturbation to cell DoFs - 3x3 matrix
            v = perturbation to position DoFs
            x = atomic positions in deformed cell
            z = atomic positions in original cell
            \phi = potential energy
            S = stress tensor [3x3 matrix]
            L(U, V) = directional derivative of exp at U in direction V, i.e
            d/dt exp(U + t V)|_{t=0} = L(U, V)

        This means we can write

            d/dt E(U + t V)|_{t=0} = L(U, S exp (-U)) : V

        and therefore the contribution to the gradient of the energy is

            \nabla E(U) / \nabla U_ij =  [L(U, S exp(-U))]_ij

        .. deprecated:: 3.23.0
            Use :class:`~ase.filters.FrechetCellFilter` for better convergence
            w.r.t. cell variables.
        """
        Filter.__init__(self, atoms=atoms, indices=range(len(atoms)))
        UnitCellFilter.__init__(self, atoms=atoms, mask=mask,
                                cell_factor=cell_factor,
                                hydrostatic_strain=hydrostatic_strain,
                                constant_volume=constant_volume,
                                scalar_pressure=scalar_pressure)
        if cell_factor is not None:
            # cell_factor used in UnitCellFilter does not affect on gradients of
            # ExpCellFilter.
            warn("cell_factor is deprecated")
        self.cell_factor = 1.0

        # We defer the scipy import to avoid high immediate import overhead
        from scipy.linalg import expm, logm
        self.expm = expm
        self.logm = logm

    def get_forces(self, **kwargs):
        forces = UnitCellFilter.get_forces(self, **kwargs)

        # forces on atoms are same as UnitCellFilter, we just
        # need to modify the stress contribution
        stress = self.atoms.get_stress(**kwargs)
        volume = self.atoms.get_volume()
        virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
                            np.diag([self.scalar_pressure] * 3))

        cur_deform_grad = self.deform_grad()
        cur_deform_grad_log = self.logm(cur_deform_grad)

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        deform_grad_log_force_naive = virial.copy()
        Y = np.zeros((6, 6))
        Y[0:3, 0:3] = cur_deform_grad_log
        Y[3:6, 3:6] = cur_deform_grad_log
        Y[0:3, 3:6] = - virial @ self.expm(-cur_deform_grad_log)
        deform_grad_log_force = -self.expm(Y)[0:3, 3:6]
        for (i1, i2) in [(0, 1), (0, 2), (1, 2)]:
            ff = 0.5 * (deform_grad_log_force[i1, i2] +
                        deform_grad_log_force[i2, i1])
            deform_grad_log_force[i1, i2] = ff
            deform_grad_log_force[i2, i1] = ff

        # check for reasonable alignment between naive and
        # exact search directions
        all_are_equal = np.all(np.isclose(deform_grad_log_force,
                                          deform_grad_log_force_naive))
        if all_are_equal or \
            (np.sum(deform_grad_log_force * deform_grad_log_force_naive) /
             np.sqrt(np.sum(deform_grad_log_force**2) *
                     np.sum(deform_grad_log_force_naive**2)) > 0.8):
            deform_grad_log_force = deform_grad_log_force_naive

        # Cauchy stress used for convergence testing
        convergence_crit_stress = -(virial / volume)
        if self.constant_volume:
            # apply constraint to force
            dglf_trace = deform_grad_log_force.trace()
            np.fill_diagonal(deform_grad_log_force,
                             np.diag(deform_grad_log_force) - dglf_trace / 3.0)
            # apply constraint to Cauchy stress used for convergence testing
            ccs_trace = convergence_crit_stress.trace()
            np.fill_diagonal(convergence_crit_stress,
                             np.diag(convergence_crit_stress) - ccs_trace / 3.0)

        # pack gradients into vector
        natoms = len(self.atoms)
        forces[natoms:] = deform_grad_log_force
        self.stress = full_3x3_to_voigt_6_stress(convergence_crit_stress)
        return forces