1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
|
# fmt: off
"""Defines class/functions to write input and parse output for FHI-aims."""
import os
import re
import time
import warnings
from functools import cached_property
from pathlib import Path
from typing import Any, Dict, List, Union
import numpy as np
from ase import Atom, Atoms
from ase.calculators.calculator import kpts2mp
from ase.calculators.singlepoint import SinglePointDFTCalculator
from ase.constraints import FixAtoms, FixCartesian
from ase.data import atomic_numbers
from ase.io import ParseError
from ase.units import Ang, fs
from ase.utils import deprecated, reader, writer
v_unit = Ang / (1000.0 * fs)
LINE_NOT_FOUND = object()
class AimsParseError(Exception):
"""Exception raised if an error occurs when parsing an Aims output file"""
def __init__(self, message):
self.message = message
super().__init__(self.message)
# Read aims geometry files
@reader
def read_aims(fd, apply_constraints=True):
"""Import FHI-aims geometry type files.
Reads unitcell, atom positions and constraints from
a geometry.in file.
If geometric constraint (symmetry parameters) are in the file
include that information in atoms.info["symmetry_block"]
"""
lines = fd.readlines()
return parse_geometry_lines(lines, apply_constraints=apply_constraints)
def parse_geometry_lines(lines, apply_constraints=True):
from ase import Atoms
from ase.constraints import (
FixAtoms,
FixCartesian,
FixCartesianParametricRelations,
FixScaledParametricRelations,
)
atoms = Atoms()
positions = []
cell = []
symbols = []
velocities = []
magmoms = []
symmetry_block = []
charges = []
fix = []
fix_cart = []
xyz = np.array([0, 0, 0])
i = -1
n_periodic = -1
periodic = np.array([False, False, False])
cart_positions, scaled_positions = False, False
for line in lines:
inp = line.split()
if inp == []:
continue
if inp[0] in ["atom", "atom_frac"]:
if inp[0] == "atom":
cart_positions = True
else:
scaled_positions = True
if xyz.all():
fix.append(i)
elif xyz.any():
fix_cart.append(FixCartesian(i, xyz))
floatvect = float(inp[1]), float(inp[2]), float(inp[3])
positions.append(floatvect)
symbols.append(inp[4])
magmoms.append(0.0)
charges.append(0.0)
xyz = np.array([0, 0, 0])
i += 1
elif inp[0] == "lattice_vector":
floatvect = float(inp[1]), float(inp[2]), float(inp[3])
cell.append(floatvect)
n_periodic = n_periodic + 1
periodic[n_periodic] = True
elif inp[0] == "initial_moment":
magmoms[-1] = float(inp[1])
elif inp[0] == "initial_charge":
charges[-1] = float(inp[1])
elif inp[0] == "constrain_relaxation":
if inp[1] == ".true.":
fix.append(i)
elif inp[1] == "x":
xyz[0] = 1
elif inp[1] == "y":
xyz[1] = 1
elif inp[1] == "z":
xyz[2] = 1
elif inp[0] == "velocity":
floatvect = [v_unit * float(line) for line in inp[1:4]]
velocities.append(floatvect)
elif inp[0] in [
"symmetry_n_params",
"symmetry_params",
"symmetry_lv",
"symmetry_frac",
]:
symmetry_block.append(" ".join(inp))
if xyz.all():
fix.append(i)
elif xyz.any():
fix_cart.append(FixCartesian(i, xyz))
if cart_positions and scaled_positions:
raise Exception(
"Can't specify atom positions with mixture of "
"Cartesian and fractional coordinates"
)
elif scaled_positions and periodic.any():
atoms = Atoms(
symbols,
scaled_positions=positions,
cell=cell,
pbc=periodic)
else:
atoms = Atoms(symbols, positions)
if len(velocities) > 0:
if len(velocities) != len(positions):
raise Exception(
"Number of positions and velocities have to coincide.")
atoms.set_velocities(velocities)
fix_params = []
if len(symmetry_block) > 5:
params = symmetry_block[1].split()[1:]
lattice_expressions = []
lattice_params = []
atomic_expressions = []
atomic_params = []
n_lat_param = int(symmetry_block[0].split(" ")[2])
lattice_params = params[:n_lat_param]
atomic_params = params[n_lat_param:]
for ll, line in enumerate(symmetry_block[2:]):
expression = " ".join(line.split(" ")[1:])
if ll < 3:
lattice_expressions += expression.split(",")
else:
atomic_expressions += expression.split(",")
fix_params.append(
FixCartesianParametricRelations.from_expressions(
list(range(3)),
lattice_params,
lattice_expressions,
use_cell=True,
)
)
fix_params.append(
FixScaledParametricRelations.from_expressions(
list(range(len(atoms))), atomic_params, atomic_expressions
)
)
if any(magmoms):
atoms.set_initial_magnetic_moments(magmoms)
if any(charges):
atoms.set_initial_charges(charges)
if periodic.any():
atoms.set_cell(cell)
atoms.set_pbc(periodic)
if len(fix):
atoms.set_constraint([FixAtoms(indices=fix)] + fix_cart + fix_params)
else:
atoms.set_constraint(fix_cart + fix_params)
if fix_params and apply_constraints:
atoms.set_positions(atoms.get_positions())
return atoms
def get_aims_header():
"""Returns the header for aims input files"""
lines = ["#" + "=" * 79]
for line in [
"Created using the Atomic Simulation Environment (ASE)",
time.asctime(),
]:
lines.append("# " + line + "\n")
return lines
def _write_velocities_alias(args: List, kwargs: Dict[str, Any]) -> bool:
arg_position = 5
if len(args) > arg_position and args[arg_position]:
args[arg_position - 1] = True
elif kwargs.get("velocities", False):
if len(args) < arg_position:
kwargs["write_velocities"] = True
else:
args[arg_position - 1] = True
else:
return False
return True
# Write aims geometry files
@deprecated(
"Use of `velocities` is deprecated, please use `write_velocities`",
category=FutureWarning,
callback=_write_velocities_alias,
)
@writer
def write_aims(
fd,
atoms,
scaled=False,
geo_constrain=False,
write_velocities=False,
velocities=False,
ghosts=None,
info_str=None,
wrap=False,
):
"""Method to write FHI-aims geometry files.
Writes the atoms positions and constraints (only FixAtoms is
supported at the moment).
Args:
fd: file object
File to output structure to
atoms: ase.atoms.Atoms
structure to output to the file
scaled: bool
If True use fractional coordinates instead of Cartesian coordinates
symmetry_block: list of str
List of geometric constraints as defined in:
:arxiv:`1908.01610`
write_velocities: bool
If True add the atomic velocity vectors to the file
velocities: bool
NOT AN ARRAY OF VELOCITIES, but the legacy version of
`write_velocities`
ghosts: list of Atoms
A list of ghost atoms for the system
info_str: str
A string to be added to the header of the file
wrap: bool
Wrap atom positions to cell before writing
.. deprecated:: 3.23.0
Use of ``velocities`` is deprecated, please use ``write_velocities``.
"""
if scaled and not np.all(atoms.pbc):
raise ValueError(
"Requesting scaled for a calculation where scaled=True, but "
"the system is not periodic")
if geo_constrain:
if not scaled and np.all(atoms.pbc):
warnings.warn(
"Setting scaled to True because a symmetry_block is detected."
)
scaled = True
elif not np.all(atoms.pbc):
warnings.warn(
"Parameteric constraints can only be used in periodic systems."
)
geo_constrain = False
for line in get_aims_header():
fd.write(line + "\n")
# If writing additional information is requested via info_str:
if info_str is not None:
fd.write("\n# Additional information:\n")
if isinstance(info_str, list):
fd.write("\n".join([f"# {s}" for s in info_str]))
else:
fd.write(f"# {info_str}")
fd.write("\n")
fd.write("#=======================================================\n")
i = 0
if atoms.get_pbc().any():
for n, vector in enumerate(atoms.get_cell()):
fd.write("lattice_vector ")
for i in range(3):
fd.write(f"{vector[i]:16.16f} ")
fd.write("\n")
fix_cart = np.zeros((len(atoms), 3), dtype=bool)
for constr in atoms.constraints:
if isinstance(constr, FixAtoms):
fix_cart[constr.index] = (True, True, True)
elif isinstance(constr, FixCartesian):
fix_cart[constr.index] = constr.mask
if ghosts is None:
ghosts = np.zeros(len(atoms))
else:
assert len(ghosts) == len(atoms)
wrap = wrap and not geo_constrain
scaled_positions = atoms.get_scaled_positions(wrap=wrap)
for i, atom in enumerate(atoms):
if ghosts[i] == 1:
atomstring = "empty "
elif scaled:
atomstring = "atom_frac "
else:
atomstring = "atom "
fd.write(atomstring)
if scaled:
for pos in scaled_positions[i]:
fd.write(f"{pos:16.16f} ")
else:
for pos in atom.position:
fd.write(f"{pos:16.16f} ")
fd.write(atom.symbol)
fd.write("\n")
# (1) all coords are constrained:
if fix_cart[i].all():
fd.write(" constrain_relaxation .true.\n")
# (2) some coords are constrained:
elif fix_cart[i].any():
xyz = fix_cart[i]
for n in range(3):
if xyz[n]:
fd.write(f" constrain_relaxation {'xyz'[n]}\n")
if atom.charge:
fd.write(f" initial_charge {atom.charge:16.6f}\n")
if atom.magmom:
fd.write(f" initial_moment {atom.magmom:16.6f}\n")
if write_velocities and atoms.get_velocities() is not None:
v = atoms.get_velocities()[i] / v_unit
fd.write(f" velocity {v[0]:.16f} {v[1]:.16f} {v[2]:.16f}\n")
if geo_constrain:
for line in get_sym_block(atoms):
fd.write(line)
def get_sym_block(atoms):
"""Get symmetry block for Parametric constraints in atoms.constraints"""
from ase.constraints import (
FixCartesianParametricRelations,
FixScaledParametricRelations,
)
# Initialize param/expressions lists
atomic_sym_params = []
lv_sym_params = []
atomic_param_constr = np.zeros((len(atoms),), dtype="<U100")
lv_param_constr = np.zeros((3,), dtype="<U100")
# Populate param/expressions list
for constr in atoms.constraints:
if isinstance(constr, FixScaledParametricRelations):
atomic_sym_params += constr.params
if np.any(atomic_param_constr[constr.indices] != ""):
warnings.warn(
"multiple parametric constraints defined for the same "
"atom, using the last one defined"
)
atomic_param_constr[constr.indices] = [
", ".join(expression) for expression in constr.expressions
]
elif isinstance(constr, FixCartesianParametricRelations):
lv_sym_params += constr.params
if np.any(lv_param_constr[constr.indices] != ""):
warnings.warn(
"multiple parametric constraints defined for the same "
"lattice vector, using the last one defined"
)
lv_param_constr[constr.indices] = [
", ".join(expression) for expression in constr.expressions
]
if np.all(atomic_param_constr == "") and np.all(lv_param_constr == ""):
return []
# Check Constraint Parameters
if len(atomic_sym_params) != len(np.unique(atomic_sym_params)):
warnings.warn(
"Some parameters were used across constraints, they will be "
"combined in the aims calculations"
)
atomic_sym_params = np.unique(atomic_sym_params)
if len(lv_sym_params) != len(np.unique(lv_sym_params)):
warnings.warn(
"Some parameters were used across constraints, they will be "
"combined in the aims calculations"
)
lv_sym_params = np.unique(lv_sym_params)
if np.any(atomic_param_constr == ""):
raise OSError(
"FHI-aims input files require all atoms have defined parametric "
"constraints"
)
cell_inds = np.where(lv_param_constr == "")[0]
for ind in cell_inds:
lv_param_constr[ind] = "{:.16f}, {:.16f}, {:.16f}".format(
*atoms.cell[ind])
n_atomic_params = len(atomic_sym_params)
n_lv_params = len(lv_sym_params)
n_total_params = n_atomic_params + n_lv_params
sym_block = []
if n_total_params > 0:
sym_block.append("#" + "=" * 55 + "\n")
sym_block.append("# Parametric constraints\n")
sym_block.append("#" + "=" * 55 + "\n")
sym_block.append(
"symmetry_n_params {:d} {:d} {:d}\n".format(
n_total_params, n_lv_params, n_atomic_params
)
)
sym_block.append(
"symmetry_params %s\n" % " ".join(lv_sym_params + atomic_sym_params)
)
for constr in lv_param_constr:
sym_block.append(f"symmetry_lv {constr:s}\n")
for constr in atomic_param_constr:
sym_block.append(f"symmetry_frac {constr:s}\n")
return sym_block
def format_aims_control_parameter(key, value, format="%s"):
"""Format a line for the aims control.in
Parameter
---------
key: str
Name of the paramteter to format
value: Object
The value to pass to the parameter
format: str
string to format the the text as
Returns
-------
str
The properly formatted line for the aims control.in
"""
return f"{key:35s}" + (format % value) + "\n"
# Write aims control.in files
@writer
def write_control(fd, atoms, parameters, verbose_header=False):
"""Write the control.in file for FHI-aims
Parameters
----------
fd: str
The file object to write to
atoms: atoms.Atoms
The Atoms object for the requested calculation
parameters: dict
The dictionary of all paramters for the calculation
verbose_header: bool
If True then explcitly list the paramters used to generate the
control.in file inside the header
"""
parameters = dict(parameters)
lim = "#" + "=" * 79
if parameters["xc"] == "LDA":
parameters["xc"] = "pw-lda"
cubes = parameters.pop("cubes", None)
for line in get_aims_header():
fd.write(line + "\n")
if verbose_header:
fd.write("# \n# List of parameters used to initialize the calculator:")
for p, v in parameters.items():
s = f"# {p}:{v}\n"
fd.write(s)
fd.write(lim + "\n")
assert "kpts" not in parameters or "k_grid" not in parameters
assert "smearing" not in parameters or "occupation_type" not in parameters
for key, value in parameters.items():
if key == "kpts":
mp = kpts2mp(atoms, parameters["kpts"])
dk = 0.5 - 0.5 / np.array(mp)
fd.write(
format_aims_control_parameter(
"k_grid",
tuple(mp),
"%d %d %d"))
fd.write(
format_aims_control_parameter(
"k_offset",
tuple(dk),
"%f %f %f"))
elif key in ("species_dir", "tier"):
continue
elif key == "aims_command":
continue
elif key == "plus_u":
continue
elif key == "smearing":
name = parameters["smearing"][0].lower()
if name == "fermi-dirac":
name = "fermi"
width = parameters["smearing"][1]
if name == "methfessel-paxton":
order = parameters["smearing"][2]
order = " %d" % order
else:
order = ""
fd.write(
format_aims_control_parameter(
"occupation_type", (name, width, order), "%s %f%s"
)
)
elif key == "output":
for output_type in value:
fd.write(format_aims_control_parameter(key, output_type, "%s"))
elif key == "vdw_correction_hirshfeld" and value:
fd.write(format_aims_control_parameter(key, "", "%s"))
elif isinstance(value, bool):
fd.write(
format_aims_control_parameter(
key, str(value).lower(), ".%s."))
elif isinstance(value, (tuple, list)):
fd.write(
format_aims_control_parameter(
key, " ".join([str(x) for x in value]), "%s"
)
)
elif isinstance(value, str):
fd.write(format_aims_control_parameter(key, value, "%s"))
else:
fd.write(format_aims_control_parameter(key, value, "%r"))
if cubes:
cubes.write(fd)
fd.write(lim + "\n\n")
# Get the species directory
species_dir = get_species_directory
# dicts are ordered as of python 3.7
species_array = np.array(list(dict.fromkeys(atoms.symbols)))
# Grab the tier specification from the parameters. THis may either
# be None, meaning the default should be used for all species, or a
# list of integers/None values giving a specific basis set size
# for each species in the calculation.
tier = parameters.pop("tier", None)
tier_array = np.full(len(species_array), tier)
# Path to species files for FHI-aims. In this files are specifications
# for the basis set sizes depending on which basis set tier is used.
species_dir = get_species_directory(parameters.get("species_dir"))
# Parse the species files for each species present in the calculation
# according to the tier of each species.
species_basis_dict = parse_species_path(
species_array=species_array, tier_array=tier_array,
species_dir=species_dir)
# Write the basis functions to be included for each species in the
# calculation into the control.in file (fd).
write_species(fd, species_basis_dict, parameters)
def get_species_directory(species_dir=None):
"""Get the directory where the basis set information is stored
If the requested directory does not exist then raise an Error
Parameters
----------
species_dir: str
Requested directory to find the basis set info from. E.g.
`~/aims2022/FHIaims/species_defaults/defaults_2020/light`.
Returns
-------
Path
The Path to the requested or default species directory.
Raises
------
RuntimeError
If both the requested directory and the default one is not defined
or does not exit.
"""
if species_dir is None:
species_dir = os.environ.get("AIMS_SPECIES_DIR")
if species_dir is None:
raise RuntimeError(
"Missing species directory! Use species_dir "
+ "parameter or set $AIMS_SPECIES_DIR environment variable."
)
species_path = Path(species_dir)
if not species_path.exists():
raise RuntimeError(
f"The requested species_dir {species_dir} does not exist")
return species_path
def write_species(control_file_descriptor, species_basis_dict, parameters):
"""Write species for the calculation depending on basis set size.
The calculation should include certain basis set size function depending
on the numerical settings (light, tight, really tight) and the basis set
size (minimal, tier1, tier2, tier3, tier4). If the basis set size is not
given then a 'standard' basis set size is used for each numerical setting.
The species files are defined according to these standard basis set sizes
for the numerical settings in the FHI-aims repository.
Note, for FHI-aims in ASE, we don't explicitly give the numerical setting.
Instead we include the numerical setting in the species path: e.g.
`~/aims2022/FHIaims/species_defaults/defaults_2020/light` this path has
`light`, the numerical setting, as the last folder in the path.
Example - a basis function might be commented in the standard basis set size
such as "# hydro 4 f 7.4" and this basis function should be
uncommented for another basis set size such as tier4.
Args:
control_file_descriptor: File descriptor for the control.in file into
which we need to write relevant basis functions to be included for
the calculation.
species_basis_dict: Dictionary where keys as the species symbols and
each value is a single string containing all the basis functions
to be included in the caclculation.
parameters: Calculation parameters as a dict.
"""
# Now for every species (key) in the species_basis_dict, save the
# relevant basis functions (values) from the species_basis_dict, by
# writing to the file handle (species_file_descriptor) given to this
# function.
for species_symbol, basis_set_text in species_basis_dict.items():
control_file_descriptor.write(basis_set_text)
if parameters.get("plus_u") is not None:
if species_symbol in parameters.plus_u:
control_file_descriptor.write(
f"plus_u {parameters.plus_u[species_symbol]} \n")
def parse_species_path(species_array, tier_array, species_dir):
"""Parse the species files for each species according to the tier given.
Args:
species_array: An array of species/element symbols present in the unit
cell (e.g. ['C', 'H'].)
tier_array: An array of None/integer values which define which basis
set size to use for each species/element in the calcualtion.
species_dir: Directory containing FHI-aims species files.
Returns:
Dictionary containing species as keys and the basis set specification
for each species as text as the value for the key.
"""
if len(species_array) != len(tier_array):
raise ValueError(
f"The species array length: {len(species_array)}, "
f"is not the same as the tier_array length: {len(tier_array)}")
species_basis_dict = {}
for symbol, tier in zip(species_array, tier_array):
path = species_dir / f"{atomic_numbers[symbol]:02}_{symbol}_default"
# Open the species file:
with open(path, encoding="utf8") as species_file_handle:
# Read the species file into a string.
species_file_str = species_file_handle.read()
species_basis_dict[symbol] = manipulate_tiers(
species_file_str, tier)
return species_basis_dict
def manipulate_tiers(species_string: str, tier: Union[None, int] = 1):
"""Adds basis set functions based on the tier value.
This function takes in the species file as a string, it then searches
for relevant basis functions based on the tier value to include in a new
string that is returned.
Args:
species_string: species file (default) for a given numerical setting
(light, tight, really tight) given as a string.
tier: The basis set size. This will dictate which basis set functions
are included in the returned string.
Returns:
Basis set functions defined by the tier as a string.
"""
if tier is None: # Then we use the default species file untouched.
return species_string
tier_pattern = r"(# \".* tier\" .*|# +Further.*)"
top, *tiers = re.split(tier_pattern, species_string)
tier_comments = tiers[::2]
tier_basis = tiers[1::2]
assert len(
tier_comments) == len(tier_basis), "Something wrong with splitting"
n_tiers = len(tier_comments)
assert tier <= n_tiers, f"Only {n_tiers} tiers available, you choose {tier}"
string_new = top
for i, (c, b) in enumerate(zip(tier_comments, tier_basis)):
b = re.sub(r"\n( *for_aux| *hydro| *ionic| *confined)", r"\n#\g<1>", b)
if i < tier:
b = re.sub(
r"\n#( *for_aux| *hydro| *ionic| *confined)", r"\n\g<1>", b)
string_new += c + b
return string_new
# Read aims.out files
scalar_property_to_line_key = {
"free_energy": ["| Electronic free energy"],
"number_of_iterations": ["| Number of self-consistency cycles"],
"magnetic_moment": ["N_up - N_down"],
"n_atoms": ["| Number of atoms"],
"n_bands": [
"Number of Kohn-Sham states",
"Reducing total number of Kohn-Sham states",
"Reducing total number of Kohn-Sham states",
],
"n_electrons": ["The structure contains"],
"n_kpts": ["| Number of k-points"],
"n_spins": ["| Number of spin channels"],
"electronic_temp": ["Occupation type:"],
"fermi_energy": ["| Chemical potential (Fermi level)"],
}
class AimsOutChunk:
"""Base class for AimsOutChunks"""
def __init__(self, lines):
"""Constructor
Parameters
----------
lines: list of str
The set of lines from the output file the encompasses either
a single structure within a trajectory or
general information about the calculation (header)
"""
self.lines = lines
def reverse_search_for(self, keys, line_start=0):
"""Find the last time one of the keys appears in self.lines
Parameters
----------
keys: list of str
The key strings to search for in self.lines
line_start: int
The lowest index to search for in self.lines
Returns
-------
int
The last time one of the keys appears in self.lines
"""
for ll, line in enumerate(self.lines[line_start:][::-1]):
if any(key in line for key in keys):
return len(self.lines) - ll - 1
return LINE_NOT_FOUND
def search_for_all(self, key, line_start=0, line_end=-1):
"""Find the all times the key appears in self.lines
Parameters
----------
key: str
The key string to search for in self.lines
line_start: int
The first line to start the search from
line_end: int
The last line to end the search at
Returns
-------
list of ints
All times the key appears in the lines
"""
line_index = []
for ll, line in enumerate(self.lines[line_start:line_end]):
if key in line:
line_index.append(ll + line_start)
return line_index
def parse_scalar(self, property):
"""Parse a scalar property from the chunk
Parameters
----------
property: str
The property key to parse
Returns
-------
float
The scalar value of the property
"""
line_start = self.reverse_search_for(
scalar_property_to_line_key[property])
if line_start == LINE_NOT_FOUND:
return None
line = self.lines[line_start]
return float(line.split(":")[-1].strip().split()[0])
class AimsOutHeaderChunk(AimsOutChunk):
"""The header of the aims.out file containint general information"""
def __init__(self, lines):
"""Constructor
Parameters
----------
lines: list of str
The lines inside the aims.out header
"""
super().__init__(lines)
@cached_property
def constraints(self):
"""Parse the constraints from the aims.out file
Constraints for the lattice vectors are not supported.
"""
line_inds = self.search_for_all("Found relaxation constraint for atom")
if len(line_inds) == 0:
return []
fix = []
fix_cart = []
for ll in line_inds:
line = self.lines[ll]
xyz = [0, 0, 0]
ind = int(line.split()[5][:-1]) - 1
if "All coordinates fixed" in line:
if ind not in fix:
fix.append(ind)
if "coordinate fixed" in line:
coord = line.split()[6]
if coord == "x":
xyz[0] = 1
elif coord == "y":
xyz[1] = 1
elif coord == "z":
xyz[2] = 1
keep = True
for n, c in enumerate(fix_cart):
if ind == c.index:
keep = False
break
if keep:
fix_cart.append(FixCartesian(ind, xyz))
else:
fix_cart[n].mask[xyz.index(1)] = 1
if len(fix) > 0:
fix_cart.append(FixAtoms(indices=fix))
return fix_cart
@cached_property
def initial_cell(self):
"""Parse the initial cell from the aims.out file"""
line_start = self.reverse_search_for(["| Unit cell:"])
if line_start == LINE_NOT_FOUND:
return None
return [
[float(inp) for inp in line.split()[-3:]]
for line in self.lines[line_start + 1:line_start + 4]
]
@cached_property
def initial_atoms(self):
"""Create an atoms object for the initial geometry.in structure
from the aims.out file"""
line_start = self.reverse_search_for(["Atomic structure:"])
if line_start == LINE_NOT_FOUND:
raise AimsParseError(
"No information about the structure in the chunk.")
line_start += 2
cell = self.initial_cell
positions = np.zeros((self.n_atoms, 3))
symbols = [""] * self.n_atoms
for ll, line in enumerate(
self.lines[line_start:line_start + self.n_atoms]):
inp = line.split()
positions[ll, :] = [float(pos) for pos in inp[4:7]]
symbols[ll] = inp[3]
atoms = Atoms(symbols=symbols, positions=positions)
if cell:
atoms.set_cell(cell)
atoms.set_pbc([True, True, True])
atoms.set_constraint(self.constraints)
return atoms
@cached_property
def is_md(self):
"""Determine if calculation is a molecular dynamics calculation"""
return LINE_NOT_FOUND != self.reverse_search_for(
["Complete information for previous time-step:"]
)
@cached_property
def is_relaxation(self):
"""Determine if the calculation is a geometry optimization or not"""
return LINE_NOT_FOUND != self.reverse_search_for(
["Geometry relaxation:"])
@cached_property
def _k_points(self):
"""Get the list of k-points used in the calculation"""
n_kpts = self.parse_scalar("n_kpts")
if n_kpts is None:
return {
"k_points": None,
"k_point_weights": None,
}
n_kpts = int(n_kpts)
line_start = self.reverse_search_for(["| K-points in task"])
line_end = self.reverse_search_for(["| k-point:"])
if (
(line_start == LINE_NOT_FOUND)
or (line_end == LINE_NOT_FOUND)
or (line_end - line_start != n_kpts)
):
return {
"k_points": None,
"k_point_weights": None,
}
k_points = np.zeros((n_kpts, 3))
k_point_weights = np.zeros(n_kpts)
for kk, line in enumerate(self.lines[line_start + 1:line_end + 1]):
k_points[kk] = [float(inp) for inp in line.split()[4:7]]
k_point_weights[kk] = float(line.split()[-1])
return {
"k_points": k_points,
"k_point_weights": k_point_weights,
}
@cached_property
def n_atoms(self):
"""The number of atoms for the material"""
n_atoms = self.parse_scalar("n_atoms")
if n_atoms is None:
raise AimsParseError(
"No information about the number of atoms in the header."
)
return int(n_atoms)
@cached_property
def n_bands(self):
"""The number of Kohn-Sham states for the chunk"""
line_start = self.reverse_search_for(
scalar_property_to_line_key["n_bands"])
if line_start == LINE_NOT_FOUND:
raise AimsParseError(
"No information about the number of Kohn-Sham states "
"in the header.")
line = self.lines[line_start]
if "| Number of Kohn-Sham states" in line:
return int(line.split(":")[-1].strip().split()[0])
return int(line.split()[-1].strip()[:-1])
@cached_property
def n_electrons(self):
"""The number of electrons for the chunk"""
line_start = self.reverse_search_for(
scalar_property_to_line_key["n_electrons"])
if line_start == LINE_NOT_FOUND:
raise AimsParseError(
"No information about the number of electrons in the header."
)
line = self.lines[line_start]
return int(float(line.split()[-2]))
@cached_property
def n_k_points(self):
"""The number of k_ppoints for the calculation"""
n_kpts = self.parse_scalar("n_kpts")
if n_kpts is None:
return None
return int(n_kpts)
@cached_property
def n_spins(self):
"""The number of spin channels for the chunk"""
n_spins = self.parse_scalar("n_spins")
if n_spins is None:
raise AimsParseError(
"No information about the number of spin "
"channels in the header.")
return int(n_spins)
@cached_property
def electronic_temperature(self):
"""The electronic temperature for the chunk"""
line_start = self.reverse_search_for(
scalar_property_to_line_key["electronic_temp"]
)
if line_start == LINE_NOT_FOUND:
return 0.10
line = self.lines[line_start]
return float(line.split("=")[-1].strip().split()[0])
@property
def k_points(self):
"""All k-points listed in the calculation"""
return self._k_points["k_points"]
@property
def k_point_weights(self):
"""The k-point weights for the calculation"""
return self._k_points["k_point_weights"]
@cached_property
def header_summary(self):
"""Dictionary summarizing the information inside the header"""
return {
"initial_atoms": self.initial_atoms,
"initial_cell": self.initial_cell,
"constraints": self.constraints,
"is_relaxation": self.is_relaxation,
"is_md": self.is_md,
"n_atoms": self.n_atoms,
"n_bands": self.n_bands,
"n_electrons": self.n_electrons,
"n_spins": self.n_spins,
"electronic_temperature": self.electronic_temperature,
"n_k_points": self.n_k_points,
"k_points": self.k_points,
"k_point_weights": self.k_point_weights,
}
class AimsOutCalcChunk(AimsOutChunk):
"""A part of the aims.out file correponding to a single structure"""
def __init__(self, lines, header):
"""Constructor
Parameters
----------
lines: list of str
The lines used for the structure
header: dict
A summary of the relevant information from the aims.out header
"""
super().__init__(lines)
self._header = header.header_summary
@cached_property
def _atoms(self):
"""Create an atoms object for the subsequent structures
calculated in the aims.out file"""
start_keys = [
"Atomic structure (and velocities) as used in the preceding "
"time step",
"Updated atomic structure",
"Atomic structure that was used in the preceding time step of "
"the wrapper",
]
line_start = self.reverse_search_for(start_keys)
if line_start == LINE_NOT_FOUND:
return self.initial_atoms
line_start += 1
line_end = self.reverse_search_for(
[
'Next atomic structure:',
'Writing the current geometry to file "geometry.in.next_step"'
],
line_start
)
if line_end == LINE_NOT_FOUND:
line_end = len(self.lines)
cell = []
velocities = []
atoms = Atoms()
for line in self.lines[line_start:line_end]:
if "lattice_vector " in line:
cell.append([float(inp) for inp in line.split()[1:]])
elif "atom " in line:
line_split = line.split()
atoms.append(Atom(line_split[4], tuple(
float(inp) for inp in line_split[1:4])))
elif "velocity " in line:
velocities.append([float(inp) for inp in line.split()[1:]])
assert len(atoms) == self.n_atoms
assert (len(velocities) == self.n_atoms) or (len(velocities) == 0)
if len(cell) == 3:
atoms.set_cell(np.array(cell))
atoms.set_pbc([True, True, True])
elif len(cell) != 0:
raise AimsParseError(
"Parsed geometry has incorrect number of lattice vectors."
)
if len(velocities) > 0:
atoms.set_velocities(np.array(velocities))
atoms.set_constraint(self.constraints)
return atoms
@cached_property
def forces(self):
"""Parse the forces from the aims.out file"""
line_start = self.reverse_search_for(["Total atomic forces"])
if line_start == LINE_NOT_FOUND:
return None
line_start += 1
return np.array(
[
[float(inp) for inp in line.split()[-3:]]
for line in self.lines[line_start:line_start + self.n_atoms]
]
)
@cached_property
def stresses(self):
"""Parse the stresses from the aims.out file"""
line_start = self.reverse_search_for(
["Per atom stress (eV) used for heat flux calculation"]
)
if line_start == LINE_NOT_FOUND:
return None
line_start += 3
stresses = []
for line in self.lines[line_start:line_start + self.n_atoms]:
xx, yy, zz, xy, xz, yz = (float(d) for d in line.split()[2:8])
stresses.append([xx, yy, zz, yz, xz, xy])
return np.array(stresses)
@cached_property
def stress(self):
"""Parse the stress from the aims.out file"""
from ase.stress import full_3x3_to_voigt_6_stress
line_start = self.reverse_search_for(
[
"Analytical stress tensor - Symmetrized",
"Numerical stress tensor",
]
) # Offest to relevant lines
if line_start == LINE_NOT_FOUND:
return None
stress = [
[float(inp) for inp in line.split()[2:5]]
for line in self.lines[line_start + 5:line_start + 8]
]
return full_3x3_to_voigt_6_stress(stress)
@cached_property
def is_metallic(self):
"""Checks the outputfile to see if the chunk corresponds
to a metallic system"""
line_start = self.reverse_search_for(
["material is metallic within the approximate finite "
"broadening function (occupation_type)"])
return line_start != LINE_NOT_FOUND
@cached_property
def total_energy(self):
"""Parse the energy from the aims.out file"""
if np.all(self._atoms.pbc) and self.is_metallic:
line_ind = self.reverse_search_for(["Total energy corrected"])
else:
line_ind = self.reverse_search_for(["Total energy uncorrected"])
if line_ind == LINE_NOT_FOUND:
raise AimsParseError("No energy is associated with the structure.")
return float(self.lines[line_ind].split()[5])
@cached_property
def dipole(self):
"""Parse the electric dipole moment from the aims.out file."""
line_start = self.reverse_search_for(["Total dipole moment [eAng]"])
if line_start == LINE_NOT_FOUND:
return None
line = self.lines[line_start]
return np.array([float(inp) for inp in line.split()[6:9]])
@cached_property
def dielectric_tensor(self):
"""Parse the dielectric tensor from the aims.out file"""
line_start = self.reverse_search_for(
["DFPT for dielectric_constant:--->",
"PARSE DFPT_dielectric_tensor"],
)
if line_start == LINE_NOT_FOUND:
return None
# we should find the tensor in the next three lines:
lines = self.lines[line_start + 1:line_start + 4]
# make ndarray and return
return np.array([np.fromstring(line, sep=' ') for line in lines])
@cached_property
def polarization(self):
""" Parse the polarization vector from the aims.out file"""
line_start = self.reverse_search_for(["| Cartesian Polarization"])
if line_start == LINE_NOT_FOUND:
return None
line = self.lines[line_start]
return np.array([float(s) for s in line.split()[-3:]])
@cached_property
def _hirshfeld(self):
"""Parse the Hirshfled charges volumes, and dipole moments from the
ouput"""
line_start = self.reverse_search_for(
["Performing Hirshfeld analysis of fragment charges and moments."]
)
if line_start == LINE_NOT_FOUND:
return {
"charges": None,
"volumes": None,
"atomic_dipoles": None,
"dipole": None,
}
line_inds = self.search_for_all("Hirshfeld charge", line_start, -1)
hirshfeld_charges = np.array(
[float(self.lines[ind].split(":")[1]) for ind in line_inds]
)
line_inds = self.search_for_all("Hirshfeld volume", line_start, -1)
hirshfeld_volumes = np.array(
[float(self.lines[ind].split(":")[1]) for ind in line_inds]
)
line_inds = self.search_for_all(
"Hirshfeld dipole vector", line_start, -1)
hirshfeld_atomic_dipoles = np.array(
[
[float(inp) for inp in self.lines[ind].split(":")[1].split()]
for ind in line_inds
]
)
if not np.any(self._atoms.pbc):
positions = self._atoms.get_positions()
hirshfeld_dipole = np.sum(
hirshfeld_charges.reshape((-1, 1)) * positions,
axis=1,
)
else:
hirshfeld_dipole = None
return {
"charges": hirshfeld_charges,
"volumes": hirshfeld_volumes,
"atomic_dipoles": hirshfeld_atomic_dipoles,
"dipole": hirshfeld_dipole,
}
@cached_property
def _eigenvalues(self):
"""Parse the eigenvalues and occupancies of the system. If eigenvalue
for a particular k-point is not present in the output file
then set it to np.nan
"""
line_start = self.reverse_search_for(["Writing Kohn-Sham eigenvalues."])
if line_start == LINE_NOT_FOUND:
return {"eigenvalues": None, "occupancies": None}
line_end_1 = self.reverse_search_for(
["Self-consistency cycle converged."], line_start
)
line_end_2 = self.reverse_search_for(
[
"What follows are estimated values for band gap, "
"HOMO, LUMO, etc.",
"Current spin moment of the entire structure :",
"Highest occupied state (VBM)"
],
line_start,
)
if line_end_1 == LINE_NOT_FOUND:
line_end = line_end_2
elif line_end_2 == LINE_NOT_FOUND:
line_end = line_end_1
else:
line_end = min(line_end_1, line_end_2)
n_kpts = self.n_k_points if np.all(self._atoms.pbc) else 1
if n_kpts is None:
return {"eigenvalues": None, "occupancies": None}
eigenvalues = np.full((n_kpts, self.n_bands, self.n_spins), np.nan)
occupancies = np.full((n_kpts, self.n_bands, self.n_spins), np.nan)
occupation_block_start = self.search_for_all(
"State Occupation Eigenvalue [Ha] Eigenvalue [eV]",
line_start,
line_end,
)
kpt_def = self.search_for_all("K-point: ", line_start, line_end)
if len(kpt_def) > 0:
kpt_inds = [int(self.lines[ll].split()[1]) - 1 for ll in kpt_def]
elif (self.n_k_points is None) or (self.n_k_points == 1):
kpt_inds = [0]
else:
raise ParseError("Cannot find k-point definitions")
assert len(kpt_inds) == len(occupation_block_start)
spins = [0] * len(occupation_block_start)
if self.n_spins == 2:
spin_def = self.search_for_all("Spin-", line_start, line_end)
assert len(spin_def) == len(occupation_block_start)
spins = [int("Spin-down eigenvalues:" in self.lines[ll])
for ll in spin_def]
for occ_start, kpt_ind, spin in zip(
occupation_block_start, kpt_inds, spins):
for ll, line in enumerate(
self.lines[occ_start + 1:occ_start + self.n_bands + 1]
):
if "***" in line:
warn_msg = f"The {ll + 1}th eigenvalue for the "
"{kpt_ind+1}th k-point and {spin}th channels could "
"not be read (likely too large to be printed "
"in the output file)"
warnings.warn(warn_msg)
continue
split_line = line.split()
eigenvalues[kpt_ind, ll, spin] = float(split_line[3])
occupancies[kpt_ind, ll, spin] = float(split_line[1])
return {"eigenvalues": eigenvalues, "occupancies": occupancies}
@cached_property
def atoms(self):
"""Convert AimsOutChunk to Atoms object and add all non-standard
outputs to atoms.info"""
atoms = self._atoms
atoms.calc = SinglePointDFTCalculator(
atoms,
energy=self.free_energy,
free_energy=self.free_energy,
forces=self.forces,
stress=self.stress,
stresses=self.stresses,
magmom=self.magmom,
dipole=self.dipole,
dielectric_tensor=self.dielectric_tensor,
polarization=self.polarization,
)
return atoms
@property
def results(self):
"""Convert an AimsOutChunk to a Results Dictionary"""
results = {
"energy": self.free_energy,
"free_energy": self.free_energy,
"total_energy": self.total_energy,
"forces": self.forces,
"stress": self.stress,
"stresses": self.stresses,
"magmom": self.magmom,
"dipole": self.dipole,
"fermi_energy": self.E_f,
"n_iter": self.n_iter,
"hirshfeld_charges": self.hirshfeld_charges,
"hirshfeld_dipole": self.hirshfeld_dipole,
"hirshfeld_volumes": self.hirshfeld_volumes,
"hirshfeld_atomic_dipoles": self.hirshfeld_atomic_dipoles,
"eigenvalues": self.eigenvalues,
"occupancies": self.occupancies,
"dielectric_tensor": self.dielectric_tensor,
"polarization": self.polarization,
}
return {
key: value for key,
value in results.items() if value is not None}
@property
def initial_atoms(self):
"""The initial structure defined in the geoemtry.in file"""
return self._header["initial_atoms"]
@property
def initial_cell(self):
"""The initial lattice vectors defined in the geoemtry.in file"""
return self._header["initial_cell"]
@property
def constraints(self):
"""The relaxation constraints for the calculation"""
return self._header["constraints"]
@property
def n_atoms(self):
"""The number of atoms for the material"""
return self._header["n_atoms"]
@property
def n_bands(self):
"""The number of Kohn-Sham states for the chunk"""
return self._header["n_bands"]
@property
def n_electrons(self):
"""The number of electrons for the chunk"""
return self._header["n_electrons"]
@property
def n_spins(self):
"""The number of spin channels for the chunk"""
return self._header["n_spins"]
@property
def electronic_temperature(self):
"""The electronic temperature for the chunk"""
return self._header["electronic_temperature"]
@property
def n_k_points(self):
"""The number of electrons for the chunk"""
return self._header["n_k_points"]
@property
def k_points(self):
"""The number of spin channels for the chunk"""
return self._header["k_points"]
@property
def k_point_weights(self):
"""k_point_weights electronic temperature for the chunk"""
return self._header["k_point_weights"]
@cached_property
def free_energy(self):
"""The free energy for the chunk"""
return self.parse_scalar("free_energy")
@cached_property
def n_iter(self):
"""The number of SCF iterations needed to converge the SCF cycle for
the chunk"""
return self.parse_scalar("number_of_iterations")
@cached_property
def magmom(self):
"""The magnetic moment for the chunk"""
return self.parse_scalar("magnetic_moment")
@cached_property
def E_f(self):
"""The Fermi energy for the chunk"""
return self.parse_scalar("fermi_energy")
@cached_property
def converged(self):
"""True if the chunk is a fully converged final structure"""
return (len(self.lines) > 0) and ("Have a nice day." in self.lines[-5:])
@property
def hirshfeld_charges(self):
"""The Hirshfeld charges for the chunk"""
return self._hirshfeld["charges"]
@property
def hirshfeld_atomic_dipoles(self):
"""The Hirshfeld atomic dipole moments for the chunk"""
return self._hirshfeld["atomic_dipoles"]
@property
def hirshfeld_volumes(self):
"""The Hirshfeld volume for the chunk"""
return self._hirshfeld["volumes"]
@property
def hirshfeld_dipole(self):
"""The Hirshfeld systematic dipole moment for the chunk"""
if not np.any(self._atoms.pbc):
return self._hirshfeld["dipole"]
return None
@property
def eigenvalues(self):
"""All outputted eigenvalues for the system"""
return self._eigenvalues["eigenvalues"]
@property
def occupancies(self):
"""All outputted occupancies for the system"""
return self._eigenvalues["occupancies"]
def get_header_chunk(fd):
"""Returns the header information from the aims.out file"""
header = []
line = ""
# Stop the header once the first SCF cycle begins
while (
"Convergence: q app. | density | eigen (eV) | Etot (eV)"
not in line
and "Convergence: q app. | density, spin | eigen (eV) |"
not in line
and "Begin self-consistency iteration #" not in line
):
try:
line = next(fd).strip() # Raises StopIteration on empty file
except StopIteration:
raise ParseError(
"No SCF steps present, calculation failed at setup."
)
header.append(line)
return AimsOutHeaderChunk(header)
def get_aims_out_chunks(fd, header_chunk):
"""Yield unprocessed chunks (header, lines) for each AimsOutChunk image."""
try:
line = next(fd).strip() # Raises StopIteration on empty file
except StopIteration:
return
# If the calculation is relaxation the updated structural information
# occurs before the re-initialization
if header_chunk.is_relaxation:
chunk_end_line = (
"Geometry optimization: Attempting to predict improved coordinates."
)
else:
chunk_end_line = "Begin self-consistency loop: Re-initialization"
# If SCF is not converged then do not treat the next chunk_end_line as a
# new chunk until after the SCF is re-initialized
ignore_chunk_end_line = False
while True:
try:
line = next(fd).strip() # Raises StopIteration on empty file
except StopIteration:
break
lines = []
while chunk_end_line not in line or ignore_chunk_end_line:
lines.append(line)
# If SCF cycle not converged or numerical stresses are requested,
# don't end chunk on next Re-initialization
patterns = [
(
"Self-consistency cycle not yet converged -"
" restarting mixer to attempt better convergence."
),
(
"Components of the stress tensor (for mathematical "
"background see comments in numerical_stress.f90)."
),
"Calculation of numerical stress completed",
]
if any(pattern in line for pattern in patterns):
ignore_chunk_end_line = True
elif "Begin self-consistency loop: Re-initialization" in line:
ignore_chunk_end_line = False
try:
line = next(fd).strip()
except StopIteration:
break
yield AimsOutCalcChunk(lines, header_chunk)
def check_convergence(chunks, non_convergence_ok=False):
"""Check if the aims output file is for a converged calculation
Parameters
----------
chunks: list of AimsOutChunks
The list of chunks for the aims calculations
non_convergence_ok: bool
True if it is okay for the calculation to not be converged
Returns
-------
bool
True if the calculation is converged
"""
if not non_convergence_ok and not chunks[-1].converged:
raise ParseError("The calculation did not complete successfully")
return True
@reader
def read_aims_output(fd, index=-1, non_convergence_ok=False):
"""Import FHI-aims output files with all data available, i.e.
relaxations, MD information, force information etc etc etc."""
header_chunk = get_header_chunk(fd)
chunks = list(get_aims_out_chunks(fd, header_chunk))
check_convergence(chunks, non_convergence_ok)
# Relaxations have an additional footer chunk due to how it is split
if header_chunk.is_relaxation:
images = [chunk.atoms for chunk in chunks[:-1]]
else:
images = [chunk.atoms for chunk in chunks]
return images[index]
@reader
def read_aims_results(fd, index=-1, non_convergence_ok=False):
"""Import FHI-aims output files and summarize all relevant information
into a dictionary"""
header_chunk = get_header_chunk(fd)
chunks = list(get_aims_out_chunks(fd, header_chunk))
check_convergence(chunks, non_convergence_ok)
# Relaxations have an additional footer chunk due to how it is split
if header_chunk.is_relaxation and (index == -1):
return chunks[-2].results
return chunks[index].results
|