1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
# fmt: off
"""This module defines I/O routines with CASTEP files.
The key idea is that all function accept or return atoms objects.
CASTEP specific parameters will be returned through the <atoms>.calc
attribute.
"""
import os
import re
import warnings
from copy import deepcopy
from typing import List, Tuple
import numpy as np
import ase
# independent unit management included here:
# When high accuracy is required, this allows to easily pin down
# unit conversion factors from different "unit definition systems"
# (CODATA1986 for ase-3.6.0.2515 vs CODATA2002 for CASTEP 5.01).
#
# ase.units in in ase-3.6.0.2515 is based on CODATA1986
import ase.units
from ase.constraints import FixAtoms, FixCartesian, FixedLine, FixedPlane
from ase.geometry.cell import cellpar_to_cell
from ase.io.castep.castep_reader import read_castep_castep
from ase.parallel import paropen
from ase.spacegroup import Spacegroup
from ase.utils import atoms_to_spglib_cell, reader, writer
from .geom_md_ts import (
read_castep_geom,
read_castep_md,
write_castep_geom,
write_castep_md,
)
units_ase = {
'hbar': ase.units._hbar * ase.units.J,
'Eh': ase.units.Hartree,
'kB': ase.units.kB,
'a0': ase.units.Bohr,
't0': ase.units._hbar * ase.units.J / ase.units.Hartree,
'c': ase.units._c,
'me': ase.units._me / ase.units._amu,
'Pascal': 1.0 / ase.units.Pascal}
# CODATA1986 (included herein for the sake of completeness)
# taken from
# http://physics.nist.gov/cuu/Archive/1986RMP.pdf
units_CODATA1986 = {
'hbar': 6.5821220E-16, # eVs
'Eh': 27.2113961, # eV
'kB': 8.617385E-5, # eV/K
'a0': 0.529177249, # A
'c': 299792458, # m/s
'e': 1.60217733E-19, # C
'me': 5.485799110E-4} # u
# CODATA2002: default in CASTEP 5.01
# (-> check in more recent CASTEP in case of numerical discrepancies?!)
# taken from
# http://physics.nist.gov/cuu/Document/all_2002.pdf
units_CODATA2002 = {
'hbar': 6.58211915E-16, # eVs
'Eh': 27.2113845, # eV
'kB': 8.617343E-5, # eV/K
'a0': 0.5291772108, # A
'c': 299792458, # m/s
'e': 1.60217653E-19, # C
'me': 5.4857990945E-4} # u
# (common) derived entries
for d in (units_CODATA1986, units_CODATA2002):
d['t0'] = d['hbar'] / d['Eh'] # s
d['Pascal'] = d['e'] * 1E30 # Pa
__all__ = [
# routines for the generic io function
'read_castep_castep',
'read_castep_cell',
'read_castep_geom',
'read_castep_md',
'read_phonon',
'read_castep_phonon',
# additional reads that still need to be wrapped
'read_param',
'read_seed',
# write that is already wrapped
'write_castep_cell',
'write_castep_geom',
'write_castep_md',
# param write - in principle only necessary in junction with the calculator
'write_param']
def write_freeform(fd, outputobj):
"""
Prints out to a given file a CastepInputFile or derived class, such as
CastepCell or CastepParam.
"""
options = outputobj._options
# Some keywords, if present, are printed in this order
preferred_order = ['lattice_cart', 'lattice_abc',
'positions_frac', 'positions_abs',
'species_pot', 'symmetry_ops', # CELL file
'task', 'cut_off_energy' # PARAM file
]
keys = outputobj.get_attr_dict().keys()
# This sorts only the ones in preferred_order and leaves the rest
# untouched
keys = sorted(keys, key=lambda x: preferred_order.index(x)
if x in preferred_order
else len(preferred_order))
for kw in keys:
opt = options[kw]
if opt.type.lower() == 'block':
fd.write('%BLOCK {0}\n{1}\n%ENDBLOCK {0}\n\n'.format(
kw.upper(),
opt.value.strip('\n')))
else:
fd.write(f'{kw.upper()}: {opt.value}\n')
@writer
def write_castep_cell(fd, atoms, positions_frac=False, force_write=False,
precision=6, magnetic_moments=None,
castep_cell=None):
"""
This CASTEP export function write minimal information to
a .cell file. If the atoms object is a trajectory, it will
take the last image.
Note that function has been altered in order to require a filedescriptor
rather than a filename. This allows to use the more generic write()
function from formats.py
Note that the "force_write" keywords has no effect currently.
Arguments:
positions_frac: boolean. If true, positions are printed as fractional
rather than absolute. Default is false.
castep_cell: if provided, overrides the existing CastepCell object in
the Atoms calculator
precision: number of digits to which lattice and positions are printed
magnetic_moments: if None, no SPIN values are initialised.
If 'initial', the values from
get_initial_magnetic_moments() are used.
If 'calculated', the values from
get_magnetic_moments() are used.
If an array of the same length as the atoms object,
its contents will be used as magnetic moments.
"""
if isinstance(atoms, list):
if len(atoms) > 1:
atoms = atoms[-1]
# Header
fd.write('# written by ASE\n\n')
# To write this we simply use the existing Castep calculator, or create
# one
from ase.calculators.castep import Castep, CastepCell
try:
has_cell = isinstance(atoms.calc.cell, CastepCell)
except AttributeError:
has_cell = False
if has_cell:
cell = deepcopy(atoms.calc.cell)
else:
cell = Castep(keyword_tolerance=2).cell
# Write lattice
fformat = f'%{precision + 3}.{precision}f'
cell_block_format = ' '.join([fformat] * 3)
cell.lattice_cart = [cell_block_format % tuple(line)
for line in atoms.get_cell()]
if positions_frac:
pos_keyword = 'positions_frac'
positions = atoms.get_scaled_positions()
else:
pos_keyword = 'positions_abs'
positions = atoms.get_positions()
if atoms.has('castep_custom_species'):
elems = atoms.get_array('castep_custom_species')
else:
elems = atoms.get_chemical_symbols()
if atoms.has('masses'):
from ase.data import atomic_masses
masses = atoms.get_array('masses')
custom_masses = {}
for i, species in enumerate(elems):
custom_mass = masses[i]
# build record of different masses for each species
if species not in custom_masses:
# build dictionary of positions of all species with
# same name and mass value ideally there should only
# be one mass per species
custom_masses[species] = {custom_mass: [i]}
# if multiple masses found for a species
elif custom_mass not in custom_masses[species].keys():
# if custom species were already manually defined raise an error
if atoms.has('castep_custom_species'):
raise ValueError(
"Could not write custom mass block for {0}. \n"
"Custom mass was set ({1}), but an inconsistent set of "
"castep_custom_species already defines "
"({2}) for {0}. \n"
"If using both features, ensure that "
"each species type in "
"atoms.arrays['castep_custom_species'] "
"has consistent mass values and that each atom "
"with non-standard "
"mass belongs to a custom species type."
"".format(
species, custom_mass, list(
custom_masses[species].keys())[0]))
# append mass to create custom species later
else:
custom_masses[species][custom_mass] = [i]
else:
custom_masses[species][custom_mass].append(i)
# create species_mass block
mass_block = []
for el, mass_dict in custom_masses.items():
# ignore mass record that match defaults
default = mass_dict.pop(atomic_masses[atoms.get_array(
'numbers')[list(elems).index(el)]], None)
if mass_dict:
# no custom species need to be created
if len(mass_dict) == 1 and not default:
mass_block.append('{} {}'.format(
el, list(mass_dict.keys())[0]))
# for each custom mass, create new species and change names to
# match in 'elems' list
else:
warnings.warn(
'Custom mass specified for '
'standard species {}, creating custom species'
.format(el))
for i, vals in enumerate(mass_dict.items()):
mass_val, idxs = vals
custom_species_name = f"{el}:{i}"
warnings.warn(
'Creating custom species {} with mass {}'.format(
custom_species_name, str(mass_dict)))
for idx in idxs:
elems[idx] = custom_species_name
mass_block.append('{} {}'.format(
custom_species_name, mass_val))
cell.species_mass = mass_block
if atoms.has('castep_labels'):
labels = atoms.get_array('castep_labels')
else:
labels = ['NULL'] * len(elems)
if str(magnetic_moments).lower() == 'initial':
magmoms = atoms.get_initial_magnetic_moments()
elif str(magnetic_moments).lower() == 'calculated':
magmoms = atoms.get_magnetic_moments()
elif np.array(magnetic_moments).shape == (len(elems),):
magmoms = np.array(magnetic_moments)
else:
magmoms = [0] * len(elems)
pos_block = []
pos_block_format = '%s ' + cell_block_format
for i, el in enumerate(elems):
xyz = positions[i]
line = pos_block_format % tuple([el] + list(xyz))
# ADD other keywords if necessary
if magmoms[i] != 0:
line += f' SPIN={magmoms[i]} '
if labels[i].strip() not in ('NULL', ''):
line += f' LABEL={labels[i]} '
pos_block.append(line)
setattr(cell, pos_keyword, pos_block)
constr_block = _make_block_ionic_constraints(atoms)
if constr_block:
cell.ionic_constraints = constr_block
write_freeform(fd, cell)
def _make_block_ionic_constraints(atoms: ase.Atoms) -> List[str]:
constr_block: List[str] = []
species_indices = atoms.symbols.species_indices()
for constr in atoms.constraints:
if not _is_constraint_valid(constr, len(atoms)):
continue
for i in constr.index:
symbol = atoms.get_chemical_symbols()[i]
nis = species_indices[i] + 1
if isinstance(constr, FixAtoms):
for j in range(3): # constraint for all three directions
ic = len(constr_block) + 1
line = f'{ic:6d} {symbol:3s} {nis:3d} '
line += ['1 0 0', '0 1 0', '0 0 1'][j]
constr_block.append(line)
elif isinstance(constr, FixCartesian):
for j, m in enumerate(constr.mask):
if m == 0: # not constrained
continue
ic = len(constr_block) + 1
line = f'{ic:6d} {symbol:3s} {nis:3d} '
line += ['1 0 0', '0 1 0', '0 0 1'][j]
constr_block.append(line)
elif isinstance(constr, FixedPlane):
ic = len(constr_block) + 1
line = f'{ic:6d} {symbol:3s} {nis:3d} '
line += ' '.join([str(d) for d in constr.dir])
constr_block.append(line)
elif isinstance(constr, FixedLine):
for direction in _calc_normal_vectors(constr):
ic = len(constr_block) + 1
line = f'{ic:6d} {symbol:3s} {nis:3d} '
line += ' '.join(str(_) for _ in direction)
constr_block.append(line)
return constr_block
def _is_constraint_valid(constraint, natoms: int) -> bool:
supported_constraints = (FixAtoms, FixedPlane, FixedLine, FixCartesian)
if not isinstance(constraint, supported_constraints):
warnings.warn(f'{constraint} is not supported by ASE CASTEP, skipped')
return False
if any(i < 0 or i >= natoms for i in constraint.index):
warnings.warn(f'{constraint} contains invalid indices, skipped')
return False
return True
def _calc_normal_vectors(constr: FixedLine) -> Tuple[np.ndarray, np.ndarray]:
direction = constr.dir
i2, i1 = np.argsort(np.abs(direction))[1:]
v1 = direction[i1]
v2 = direction[i2]
n1 = np.zeros(3)
n1[i2] = v1
n1[i1] = -v2
n1 = n1 / np.linalg.norm(n1)
n2 = np.cross(direction, n1)
n2 = n2 / np.linalg.norm(n2)
return n1, n2
def read_freeform(fd):
"""
Read a CASTEP freeform file (the basic format of .cell and .param files)
and return keyword-value pairs as a dict (values are strings for single
keywords and lists of strings for blocks).
"""
from ase.io.castep.castep_input_file import CastepInputFile
inputobj = CastepInputFile(keyword_tolerance=2)
filelines = fd.readlines()
keyw = None
read_block = False
block_lines = None
for i, l in enumerate(filelines):
# Strip all comments, aka anything after a hash
L = re.split(r'[#!;]', l, maxsplit=1)[0].strip()
if L == '':
# Empty line... skip
continue
lsplit = re.split(r'\s*[:=]*\s+', L, maxsplit=1)
if read_block:
if lsplit[0].lower() == '%endblock':
if len(lsplit) == 1 or lsplit[1].lower() != keyw:
raise ValueError('Out of place end of block at '
'line %i in freeform file' % i + 1)
else:
read_block = False
inputobj.__setattr__(keyw, block_lines)
else:
block_lines += [L]
else:
# Check the first word
# Is it a block?
read_block = (lsplit[0].lower() == '%block')
if read_block:
if len(lsplit) == 1:
raise ValueError(('Unrecognizable block at line %i '
'in io freeform file') % i + 1)
else:
keyw = lsplit[1].lower()
else:
keyw = lsplit[0].lower()
# Now save the value
if read_block:
block_lines = []
else:
inputobj.__setattr__(keyw, ' '.join(lsplit[1:]))
return inputobj.get_attr_dict(types=True)
@reader
def read_castep_cell(fd, index=None, calculator_args={}, find_spg=False,
units=units_CODATA2002):
"""Read a .cell file and return an atoms object.
Any value found that does not fit the atoms API
will be stored in the atoms.calc attribute.
By default, the Castep calculator will be tolerant and in the absence of a
castep_keywords.json file it will just accept all keywords that aren't
automatically parsed.
"""
from ase.calculators.castep import Castep
cell_units = { # Units specifiers for CASTEP
'bohr': units_CODATA2002['a0'],
'ang': 1.0,
'm': 1e10,
'cm': 1e8,
'nm': 10,
'pm': 1e-2
}
calc = Castep(**calculator_args)
if calc.cell.castep_version == 0 and calc._kw_tol < 3:
# No valid castep_keywords.json was found
warnings.warn(
'read_cell: Warning - Was not able to validate CASTEP input. '
'This may be due to a non-existing '
'"castep_keywords.json" '
'file or a non-existing CASTEP installation. '
'Parsing will go on but keywords will not be '
'validated and may cause problems if incorrect during a CASTEP '
'run.')
celldict = read_freeform(fd)
def parse_blockunit(line_tokens, blockname):
u = 1.0
if len(line_tokens[0]) == 1:
usymb = line_tokens[0][0].lower()
u = cell_units.get(usymb, 1)
if usymb not in cell_units:
warnings.warn('read_cell: Warning - ignoring invalid '
'unit specifier in %BLOCK {} '
'(assuming Angstrom instead)'.format(blockname))
line_tokens = line_tokens[1:]
return u, line_tokens
# Arguments to pass to the Atoms object at the end
aargs = {
'pbc': True
}
# Start by looking for the lattice
lat_keywords = [w in celldict for w in ('lattice_cart', 'lattice_abc')]
if all(lat_keywords):
warnings.warn('read_cell: Warning - two lattice blocks present in the'
' same file. LATTICE_ABC will be ignored')
elif not any(lat_keywords):
raise ValueError('Cell file must contain at least one between '
'LATTICE_ABC and LATTICE_CART')
if 'lattice_abc' in celldict:
lines = celldict.pop('lattice_abc')[0].split('\n')
line_tokens = [line.split() for line in lines]
u, line_tokens = parse_blockunit(line_tokens, 'lattice_abc')
if len(line_tokens) != 2:
warnings.warn('read_cell: Warning - ignoring additional '
'lines in invalid %BLOCK LATTICE_ABC')
abc = [float(p) * u for p in line_tokens[0][:3]]
angles = [float(phi) for phi in line_tokens[1][:3]]
aargs['cell'] = cellpar_to_cell(abc + angles)
if 'lattice_cart' in celldict:
lines = celldict.pop('lattice_cart')[0].split('\n')
line_tokens = [line.split() for line in lines]
u, line_tokens = parse_blockunit(line_tokens, 'lattice_cart')
if len(line_tokens) != 3:
warnings.warn('read_cell: Warning - ignoring more than '
'three lattice vectors in invalid %BLOCK '
'LATTICE_CART')
aargs['cell'] = [[float(x) * u for x in lt[:3]] for lt in line_tokens]
# Now move on to the positions
pos_keywords = [w in celldict
for w in ('positions_abs', 'positions_frac')]
if all(pos_keywords):
warnings.warn('read_cell: Warning - two lattice blocks present in the'
' same file. POSITIONS_FRAC will be ignored')
del celldict['positions_frac']
elif not any(pos_keywords):
raise ValueError('Cell file must contain at least one between '
'POSITIONS_FRAC and POSITIONS_ABS')
aargs['symbols'] = []
pos_type = 'positions'
pos_block = celldict.pop('positions_abs', [None])[0]
if pos_block is None:
pos_type = 'scaled_positions'
pos_block = celldict.pop('positions_frac', [None])[0]
aargs[pos_type] = []
lines = pos_block.split('\n')
line_tokens = [line.split() for line in lines]
if 'scaled' not in pos_type:
u, line_tokens = parse_blockunit(line_tokens, 'positions_abs')
else:
u = 1.0
# Here we extract all the possible additional info
# These are marked by their type
add_info = {
'SPIN': (float, 0.0), # (type, default)
'MAGMOM': (float, 0.0),
'LABEL': (str, 'NULL')
}
add_info_arrays = {k: [] for k in add_info}
def parse_info(raw_info):
re_keys = (r'({0})\s*[=:\s]{{1}}\s'
r'*([^\s]*)').format('|'.join(add_info.keys()))
# Capture all info groups
info = re.findall(re_keys, raw_info)
info = {g[0]: add_info[g[0]][0](g[1]) for g in info}
return info
# Array for custom species (a CASTEP special thing)
# Usually left unused
custom_species = None
for tokens in line_tokens:
# Now, process the whole 'species' thing
spec_custom = tokens[0].split(':', 1)
elem = spec_custom[0]
if len(spec_custom) > 1 and custom_species is None:
# Add it to the custom info!
custom_species = list(aargs['symbols'])
if custom_species is not None:
custom_species.append(tokens[0])
aargs['symbols'].append(elem)
aargs[pos_type].append([float(p) * u for p in tokens[1:4]])
# Now for the additional information
info = ' '.join(tokens[4:])
info = parse_info(info)
for k in add_info:
add_info_arrays[k] += [info.get(k, add_info[k][1])]
# read in custom species mass
if 'species_mass' in celldict:
spec_list = custom_species if custom_species else aargs['symbols']
aargs['masses'] = [None for _ in spec_list]
lines = celldict.pop('species_mass')[0].split('\n')
line_tokens = [line.split() for line in lines]
if len(line_tokens[0]) == 1:
if line_tokens[0][0].lower() not in ('amu', 'u'):
raise ValueError(
"unit specifier '{}' in %BLOCK SPECIES_MASS "
"not recognised".format(
line_tokens[0][0].lower()))
line_tokens = line_tokens[1:]
for tokens in line_tokens:
token_pos_list = [i for i, x in enumerate(
spec_list) if x == tokens[0]]
if len(token_pos_list) == 0:
warnings.warn(
'read_cell: Warning - ignoring unused '
'species mass {} in %BLOCK SPECIES_MASS'.format(
tokens[0]))
for idx in token_pos_list:
aargs['masses'][idx] = tokens[1]
# Now on to the species potentials...
if 'species_pot' in celldict:
lines = celldict.pop('species_pot')[0].split('\n')
line_tokens = [line.split() for line in lines]
for tokens in line_tokens:
if len(tokens) == 1:
# It's a library
all_spec = (set(custom_species) if custom_species is not None
else set(aargs['symbols']))
for s in all_spec:
calc.cell.species_pot = (s, tokens[0])
else:
calc.cell.species_pot = tuple(tokens[:2])
# Ionic constraints
raw_constraints = {}
if 'ionic_constraints' in celldict:
lines = celldict.pop('ionic_constraints')[0].split('\n')
line_tokens = [line.split() for line in lines]
for tokens in line_tokens:
if len(tokens) != 6:
continue
_, species, nic, x, y, z = tokens
# convert xyz to floats
x = float(x)
y = float(y)
z = float(z)
nic = int(nic)
if (species, nic) not in raw_constraints:
raw_constraints[(species, nic)] = []
raw_constraints[(species, nic)].append(np.array(
[x, y, z]))
# Symmetry operations
if 'symmetry_ops' in celldict:
lines = celldict.pop('symmetry_ops')[0].split('\n')
line_tokens = [line.split() for line in lines]
# Read them in blocks of four
blocks = np.array(line_tokens).astype(float)
if (len(blocks.shape) != 2 or blocks.shape[1] != 3
or blocks.shape[0] % 4 != 0):
warnings.warn('Warning: could not parse SYMMETRY_OPS'
' block properly, skipping')
else:
blocks = blocks.reshape((-1, 4, 3))
rotations = blocks[:, :3]
translations = blocks[:, 3]
# Regardless of whether we recognize them, store these
calc.cell.symmetry_ops = (rotations, translations)
# Anything else that remains, just add it to the cell object:
for k, (val, otype) in celldict.items():
try:
if otype == 'block':
val = val.split('\n') # Avoids a bug for one-line blocks
calc.cell.__setattr__(k, val)
except Exception as e:
raise RuntimeError(
f'Problem setting calc.cell.{k} = {val}: {e}')
# Get the relevant additional info
aargs['magmoms'] = np.array(add_info_arrays['SPIN'])
# SPIN or MAGMOM are alternative keywords
aargs['magmoms'] = np.where(aargs['magmoms'] != 0,
aargs['magmoms'],
add_info_arrays['MAGMOM'])
labels = np.array(add_info_arrays['LABEL'])
aargs['calculator'] = calc
atoms = ase.Atoms(**aargs)
# Spacegroup...
if find_spg:
# Try importing spglib
try:
import spglib
except ImportError:
warnings.warn('spglib not found installed on this system - '
'automatic spacegroup detection is not possible')
spglib = None
if spglib is not None:
symmd = spglib.get_symmetry_dataset(atoms_to_spglib_cell(atoms))
atoms_spg = Spacegroup(int(symmd['number']))
atoms.info['spacegroup'] = atoms_spg
atoms.new_array('castep_labels', labels)
if custom_species is not None:
atoms.new_array('castep_custom_species', np.array(custom_species))
fixed_atoms = []
constraints = []
index_dict = atoms.symbols.indices()
for (species, nic), value in raw_constraints.items():
absolute_nr = index_dict[species][nic - 1]
if len(value) == 3:
# Check if they are linearly independent
if np.linalg.det(value) == 0:
warnings.warn(
'Error: Found linearly dependent constraints attached '
'to atoms %s' %
(absolute_nr))
continue
fixed_atoms.append(absolute_nr)
elif len(value) == 2:
direction = np.cross(value[0], value[1])
# Check if they are linearly independent
if np.linalg.norm(direction) == 0:
warnings.warn(
'Error: Found linearly dependent constraints attached '
'to atoms %s' %
(absolute_nr))
continue
constraint = FixedLine(indices=absolute_nr, direction=direction)
constraints.append(constraint)
elif len(value) == 1:
direction = np.array(value[0], dtype=float)
constraint = FixedPlane(indices=absolute_nr, direction=direction)
constraints.append(constraint)
else:
warnings.warn(
f'Error: Found {len(value)} statements attached to atoms '
f'{absolute_nr}'
)
# we need to sort the fixed atoms list in order not to raise an assertion
# error in FixAtoms
if fixed_atoms:
constraints.append(FixAtoms(indices=sorted(fixed_atoms)))
if constraints:
atoms.set_constraint(constraints)
atoms.calc.atoms = atoms
atoms.calc.push_oldstate()
return atoms
def read_phonon(filename, index=None, read_vib_data=False,
gamma_only=True, frequency_factor=None,
units=units_CODATA2002):
"""
Wrapper function for the more generic read() functionality.
Note that this is function is intended to maintain backwards-compatibility
only. For documentation see read_castep_phonon().
"""
from ase.io import read
if read_vib_data:
full_output = True
else:
full_output = False
return read(filename, index=index, format='castep-phonon',
full_output=full_output, read_vib_data=read_vib_data,
gamma_only=gamma_only, frequency_factor=frequency_factor,
units=units)
def read_castep_phonon(fd, index=None, read_vib_data=False,
gamma_only=True, frequency_factor=None,
units=units_CODATA2002):
"""
Reads a .phonon file written by a CASTEP Phonon task and returns an atoms
object, as well as the calculated vibrational data if requested.
Note that the index argument has no effect as of now.
"""
# fd is closed by embracing read() routine
lines = fd.readlines()
atoms = None
cell = []
N = Nb = Nq = 0
scaled_positions = []
symbols = []
masses = []
# header
L = 0
while L < len(lines):
line = lines[L]
if 'Number of ions' in line:
N = int(line.split()[3])
elif 'Number of branches' in line:
Nb = int(line.split()[3])
elif 'Number of wavevectors' in line:
Nq = int(line.split()[3])
elif 'Unit cell vectors (A)' in line:
for _ in range(3):
L += 1
fields = lines[L].split()
cell.append([float(x) for x in fields[0:3]])
elif 'Fractional Co-ordinates' in line:
for _ in range(N):
L += 1
fields = lines[L].split()
scaled_positions.append([float(x) for x in fields[1:4]])
symbols.append(fields[4])
masses.append(float(fields[5]))
elif 'END header' in line:
L += 1
atoms = ase.Atoms(symbols=symbols,
scaled_positions=scaled_positions,
cell=cell)
break
L += 1
# Eigenmodes and -vectors
if frequency_factor is None:
Kayser_to_eV = 1E2 * 2 * np.pi * units['hbar'] * units['c']
# N.B. "fixed default" unit for frequencies in .phonon files is "cm-1"
# (i.e. the latter is unaffected by the internal unit conversion system of
# CASTEP!) set conversion factor to convert therefrom to eV by default for
# now
frequency_factor = Kayser_to_eV
qpoints = []
weights = []
frequencies = []
displacements = []
for _ in range(Nq):
fields = lines[L].split()
qpoints.append([float(x) for x in fields[2:5]])
weights.append(float(fields[5]))
freqs = []
for _ in range(Nb):
L += 1
fields = lines[L].split()
freqs.append(frequency_factor * float(fields[1]))
frequencies.append(np.array(freqs))
# skip the two Phonon Eigenvectors header lines
L += 2
# generate a list of displacements with a structure that is identical to
# what is stored internally in the Vibrations class (see in
# ase.vibrations.Vibrations.modes):
# np.array(displacements).shape == (Nb,3*N)
disps = []
for _ in range(Nb):
disp_coords = []
for _ in range(N):
L += 1
fields = lines[L].split()
disp_x = float(fields[2]) + float(fields[3]) * 1.0j
disp_y = float(fields[4]) + float(fields[5]) * 1.0j
disp_z = float(fields[6]) + float(fields[7]) * 1.0j
disp_coords.extend([disp_x, disp_y, disp_z])
disps.append(np.array(disp_coords))
displacements.append(np.array(disps))
if read_vib_data:
if gamma_only:
vibdata = [frequencies[0], displacements[0]]
else:
vibdata = [qpoints, weights, frequencies, displacements]
return vibdata, atoms
else:
return atoms
# Routines that only the calculator requires
def read_param(filename='', calc=None, fd=None, get_interface_options=False):
if fd is None:
if filename == '':
raise ValueError('One between filename and fd must be provided')
fd = open(filename)
elif filename:
warnings.warn('Filestream used to read param, file name will be '
'ignored')
# If necessary, get the interface options
if get_interface_options:
int_opts = {}
optre = re.compile(r'# ASE_INTERFACE ([^\s]+) : ([^\s]+)')
lines = fd.readlines()
fd.seek(0)
for line in lines:
m = optre.search(line)
if m:
int_opts[m.groups()[0]] = m.groups()[1]
data = read_freeform(fd)
if calc is None:
from ase.calculators.castep import Castep
calc = Castep(check_castep_version=False, keyword_tolerance=2)
for kw, (val, otype) in data.items():
if otype == 'block':
val = val.split('\n') # Avoids a bug for one-line blocks
calc.param.__setattr__(kw, val)
if not get_interface_options:
return calc
else:
return calc, int_opts
def write_param(filename, param, check_checkfile=False,
force_write=False,
interface_options=None):
"""Writes a CastepParam object to a CASTEP .param file
Parameters:
filename: the location of the file to write to. If it
exists it will be overwritten without warning. If it
doesn't it will be created.
param: a CastepParam instance
check_checkfile : if set to True, write_param will
only write continuation or reuse statement
if a restart file exists in the same directory
"""
if os.path.isfile(filename) and not force_write:
warnings.warn('ase.io.castep.write_param: Set optional argument '
'force_write=True to overwrite %s.' % filename)
return False
out = paropen(filename, 'w')
out.write('#######################################################\n')
out.write(f'#CASTEP param file: {filename}\n')
out.write('#Created using the Atomic Simulation Environment (ASE)#\n')
if interface_options is not None:
out.write('# Internal settings of the calculator\n')
out.write('# This can be switched off by settings\n')
out.write('# calc._export_settings = False\n')
out.write('# If stated, this will be automatically processed\n')
out.write('# by ase.io.castep.read_seed()\n')
for option, value in sorted(interface_options.items()):
out.write(f'# ASE_INTERFACE {option} : {value}\n')
out.write('#######################################################\n\n')
if check_checkfile:
param = deepcopy(param) # To avoid modifying the parent one
for checktype in ['continuation', 'reuse']:
opt = getattr(param, checktype)
if opt and opt.value:
fname = opt.value
if fname == 'default':
fname = os.path.splitext(filename)[0] + '.check'
if not (os.path.exists(fname) or
# CASTEP also understands relative path names, hence
# also check relative to the param file directory
os.path.exists(
os.path.join(os.path.dirname(filename),
opt.value))):
opt.clear()
write_freeform(out, param)
out.close()
def read_seed(seed, new_seed=None, ignore_internal_keys=False):
"""A wrapper around the CASTEP Calculator in conjunction with
read_cell and read_param. Basically this can be used to reuse
a previous calculation which results in a triple of
cell/param/castep file. The label of the calculation if pre-
fixed with `copy_of_` and everything else will be recycled as
much as possible from the addressed calculation.
Please note that this routine will return an atoms ordering as specified
in the cell file! It will thus undo the potential reordering internally
done by castep.
"""
directory = os.path.abspath(os.path.dirname(seed))
seed = os.path.basename(seed)
paramfile = os.path.join(directory, f'{seed}.param')
cellfile = os.path.join(directory, f'{seed}.cell')
castepfile = os.path.join(directory, f'{seed}.castep')
checkfile = os.path.join(directory, f'{seed}.check')
atoms = read_castep_cell(cellfile)
atoms.calc._directory = directory
atoms.calc._rename_existing_dir = False
atoms.calc._castep_pp_path = directory
atoms.calc.merge_param(paramfile,
ignore_internal_keys=ignore_internal_keys)
if new_seed is None:
atoms.calc._label = f'copy_of_{seed}'
else:
atoms.calc._label = str(new_seed)
if os.path.isfile(castepfile):
# _set_atoms needs to be True here
# but we set it right back to False
# atoms.calc._set_atoms = False
# BUGFIX: I do not see a reason to do that!
atoms.calc.read(castepfile)
# atoms.calc._set_atoms = False
# if here is a check file, we also want to re-use this information
if os.path.isfile(checkfile):
atoms.calc._check_file = os.path.basename(checkfile)
# sync the top-level object with the
# one attached to the calculator
atoms = atoms.calc.atoms
else:
# There are cases where we only want to restore a calculator/atoms
# setting without a castep file...
# No print statement required in these cases
warnings.warn(
'Corresponding *.castep file not found. '
'Atoms object will be restored from *.cell and *.param only.')
atoms.calc.push_oldstate()
return atoms
@reader
def read_bands(fd, units=units_CODATA2002):
"""Read Castep.bands file to kpoints, weights and eigenvalues.
Parameters
----------
fd : str | io.TextIOBase
Path to the `.bands` file or file descriptor for open `.bands` file.
units : dict
Conversion factors for atomic units.
Returns
-------
kpts : np.ndarray
1d NumPy array for k-point coordinates.
weights : np.ndarray
1d NumPy array for k-point weights.
eigenvalues : np.ndarray
NumPy array for eigenvalues with shape (spin, kpts, nbands).
efermi : float
Fermi energy.
"""
Hartree = units['Eh']
nkpts = int(fd.readline().split()[-1])
nspin = int(fd.readline().split()[-1])
_ = float(fd.readline().split()[-1])
nbands = int(fd.readline().split()[-1])
efermi = float(fd.readline().split()[-1])
kpts = np.zeros((nkpts, 3))
weights = np.zeros(nkpts)
eigenvalues = np.zeros((nspin, nkpts, nbands))
# Skip unit cell
for _ in range(4):
fd.readline()
def _kptline_to_i_k_wt(line: str) -> Tuple[int, List[float], float]:
split_line = line.split()
i_kpt = int(split_line[1]) - 1
kpt = list(map(float, split_line[2:5]))
wt = float(split_line[5])
return i_kpt, kpt, wt
# CASTEP often writes these out-of-order, so check index and write directly
# to the correct row
for _ in range(nkpts):
i_kpt, kpt, wt = _kptline_to_i_k_wt(fd.readline())
kpts[i_kpt, :], weights[i_kpt] = kpt, wt
for spin in range(nspin):
fd.readline() # Skip 'Spin component N' line
eigenvalues[spin, i_kpt, :] = [float(fd.readline())
for _ in range(nbands)]
return (kpts, weights, eigenvalues * Hartree, efermi * Hartree)
|