1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
# fmt: off
import difflib
import re
import warnings
from typing import List, Set
import numpy as np
from ase import Atoms
# A convenient table to avoid the previously used "eval"
_tf_table = {
'': True, # Just the keyword is equivalent to True
'True': True,
'False': False}
def _parse_tss_block(value, scaled=False):
# Parse the assigned value for a Transition State Search structure block
is_atoms = isinstance(value, Atoms)
try:
is_strlist = all(map(lambda x: isinstance(x, str), value))
except TypeError:
is_strlist = False
if not is_atoms:
if not is_strlist:
# Invalid!
raise TypeError('castep.cell.positions_abs/frac_intermediate/'
'product expects Atoms object or list of strings')
# First line must be Angstroms, or nothing
has_units = len(value[0].strip().split()) == 1
if (not scaled) and has_units and value[0].strip() != 'ang':
raise RuntimeError('Only ang units currently supported in castep.'
'cell.positions_abs_intermediate/product')
return '\n'.join(map(str.strip, value))
else:
text_block = '' if scaled else 'ang\n'
positions = (value.get_scaled_positions() if scaled else
value.get_positions())
symbols = value.get_chemical_symbols()
for s, p in zip(symbols, positions):
text_block += ' {} {:.3f} {:.3f} {:.3f}\n'.format(s, *p)
return text_block
class CastepOption:
""""A CASTEP option. It handles basic conversions from string to its value
type."""
default_convert_types = {
'boolean (logical)': 'bool',
'defined': 'bool',
'string': 'str',
'integer': 'int',
'real': 'float',
'integer vector': 'int_vector',
'real vector': 'float_vector',
'physical': 'float_physical',
'block': 'block'
}
def __init__(self, keyword, level, option_type, value=None,
docstring='No information available'):
self.keyword = keyword
self.level = level
self.type = option_type
self._value = value
self.__doc__ = docstring
@property
def value(self):
if self._value is not None:
if self.type.lower() in ('integer vector', 'real vector',
'physical'):
return ' '.join(map(str, self._value))
elif self.type.lower() in ('boolean (logical)', 'defined'):
return str(self._value).upper()
else:
return str(self._value)
@property
def raw_value(self):
# The value, not converted to a string
return self._value
@value.setter # type: ignore[attr-defined, no-redef]
def value(self, val):
if val is None:
self.clear()
return
ctype = self.default_convert_types.get(self.type.lower(), 'str')
typeparse = f'_parse_{ctype}'
try:
self._value = getattr(self, typeparse)(val)
except ValueError:
raise ConversionError(ctype, self.keyword, val)
def clear(self):
"""Reset the value of the option to None again"""
self._value = None
@staticmethod
def _parse_bool(value):
try:
value = _tf_table[str(value).strip().title()]
except (KeyError, ValueError):
raise ValueError()
return value
@staticmethod
def _parse_str(value):
value = str(value)
return value
@staticmethod
def _parse_int(value):
value = int(value)
return value
@staticmethod
def _parse_float(value):
value = float(value)
return value
@staticmethod
def _parse_int_vector(value):
# Accepts either a string or an actual list/numpy array of ints
if isinstance(value, str):
if ',' in value:
value = value.replace(',', ' ')
value = list(map(int, value.split()))
value = np.array(value)
if value.shape != (3,) or value.dtype != int:
raise ValueError()
return list(value)
@staticmethod
def _parse_float_vector(value):
# Accepts either a string or an actual list/numpy array of floats
if isinstance(value, str):
if ',' in value:
value = value.replace(',', ' ')
value = list(map(float, value.split()))
value = np.array(value) * 1.0
if value.shape != (3,) or value.dtype != float:
raise ValueError()
return list(value)
@staticmethod
def _parse_float_physical(value):
# If this is a string containing units, saves them
if isinstance(value, str):
value = value.split()
try:
l = len(value)
except TypeError:
l = 1
value = [value]
if l == 1:
try:
value = (float(value[0]), '')
except (TypeError, ValueError):
raise ValueError()
elif l == 2:
try:
value = (float(value[0]), value[1])
except (TypeError, ValueError, IndexError):
raise ValueError()
else:
raise ValueError()
return value
@staticmethod
def _parse_block(value):
if isinstance(value, str):
return value
elif hasattr(value, '__getitem__'):
return '\n'.join(value) # Arrays of lines
else:
raise ValueError()
def __repr__(self):
if self._value:
expr = ('Option: {keyword}({type}, {level}):\n{_value}\n'
).format(**self.__dict__)
else:
expr = ('Option: {keyword}[unset]({type}, {level})'
).format(**self.__dict__)
return expr
def __eq__(self, other):
if not isinstance(other, CastepOption):
return False
else:
return self.__dict__ == other.__dict__
class CastepOptionDict:
"""A dictionary-like object to hold a set of options for .cell or .param
files loaded from a dictionary, for the sake of validation.
Replaces the old CastepCellDict and CastepParamDict that were defined in
the castep_keywords.py file.
"""
def __init__(self, options=None):
object.__init__(self)
self._options = {} # ComparableDict is not needed any more as
# CastepOptions can be compared directly now
for kw in options:
opt = CastepOption(**options[kw])
self._options[opt.keyword] = opt
self.__dict__[opt.keyword] = opt
class CastepInputFile:
"""Master class for CastepParam and CastepCell to inherit from"""
_keyword_conflicts: List[Set[str]] = []
def __init__(self, options_dict=None, keyword_tolerance=1):
object.__init__(self)
if options_dict is None:
options_dict = CastepOptionDict({})
self._options = options_dict._options
self.__dict__.update(self._options)
# keyword_tolerance means how strict the checks on new attributes are
# 0 = no new attributes allowed
# 1 = new attributes allowed, warning given
# 2 = new attributes allowed, silent
self._perm = np.clip(keyword_tolerance, 0, 2)
# Compile a dictionary for quick check of conflict sets
self._conflict_dict = {
kw: set(cset).difference({kw})
for cset in self._keyword_conflicts for kw in cset}
def __repr__(self):
expr = ''
is_default = True
for key, option in sorted(self._options.items()):
if option.value is not None:
is_default = False
expr += ('%20s : %s\n' % (key, option.value))
if is_default:
expr = 'Default\n'
expr += f'Keyword tolerance: {self._perm}'
return expr
def __setattr__(self, attr, value):
# Hidden attributes are treated normally
if attr.startswith('_'):
self.__dict__[attr] = value
return
if attr not in self._options.keys():
if self._perm > 0:
# Do we consider it a string or a block?
is_str = isinstance(value, str)
is_block = False
if ((hasattr(value, '__getitem__') and not is_str)
or (is_str and len(value.split('\n')) > 1)):
is_block = True
if self._perm == 0:
similars = difflib.get_close_matches(attr,
self._options.keys())
if similars:
raise RuntimeError(
f'Option "{attr}" not known! You mean "{similars[0]}"?')
else:
raise RuntimeError(f'Option "{attr}" is not known!')
elif self._perm == 1:
warnings.warn(('Option "%s" is not known and will '
'be added as a %s') % (attr,
('block' if is_block else
'string')))
attr = attr.lower()
opt = CastepOption(keyword=attr, level='Unknown',
option_type='block' if is_block else 'string')
self._options[attr] = opt
self.__dict__[attr] = opt
else:
attr = attr.lower()
opt = self._options[attr]
if not opt.type.lower() == 'block' and isinstance(value, str):
value = value.replace(':', ' ')
# If it is, use the appropriate parser, unless a custom one is defined
attrparse = f'_parse_{attr.lower()}'
# Check for any conflicts if the value is not None
if value is not None:
cset = self._conflict_dict.get(attr.lower(), {})
for c in cset:
if (c in self._options and self._options[c].value):
warnings.warn(
'option "{attr}" conflicts with "{conflict}" in '
'calculator. Setting "{conflict}" to '
'None.'.format(attr=attr, conflict=c))
self._options[c].value = None
if hasattr(self, attrparse):
self._options[attr].value = self.__getattribute__(attrparse)(value)
else:
self._options[attr].value = value
def __getattr__(self, name):
if name[0] == '_' or self._perm == 0:
raise AttributeError()
if self._perm == 1:
warnings.warn(f'Option {(name)} is not known, returning None')
return CastepOption(keyword='none', level='Unknown',
option_type='string', value=None)
def get_attr_dict(self, raw=False, types=False):
"""Settings that go into .param file in a traditional dict"""
attrdict = {k: o.raw_value if raw else o.value
for k, o in self._options.items() if o.value is not None}
if types:
for key, val in attrdict.items():
attrdict[key] = (val, self._options[key].type)
return attrdict
class CastepParam(CastepInputFile):
"""CastepParam abstracts the settings that go into the .param file"""
_keyword_conflicts = [{'cut_off_energy', 'basis_precision'}, ]
def __init__(self, castep_keywords, keyword_tolerance=1):
self._castep_version = castep_keywords.castep_version
CastepInputFile.__init__(self, castep_keywords.CastepParamDict(),
keyword_tolerance)
@property
def castep_version(self):
return self._castep_version
# .param specific parsers
def _parse_reuse(self, value):
if value is None:
return None # Reset the value
try:
if self._options['continuation'].value:
warnings.warn('Cannot set reuse if continuation is set, and '
'vice versa. Set the other to None, if you want '
'this setting.')
return None
except KeyError:
pass
return 'default' if (value is True) else str(value)
def _parse_continuation(self, value):
if value is None:
return None # Reset the value
try:
if self._options['reuse'].value:
warnings.warn('Cannot set reuse if continuation is set, and '
'vice versa. Set the other to None, if you want '
'this setting.')
return None
except KeyError:
pass
return 'default' if (value is True) else str(value)
class CastepCell(CastepInputFile):
"""CastepCell abstracts all setting that go into the .cell file"""
_keyword_conflicts = [
{'kpoint_mp_grid', 'kpoint_mp_spacing', 'kpoint_list',
'kpoints_mp_grid', 'kpoints_mp_spacing', 'kpoints_list'},
{'bs_kpoint_mp_grid',
'bs_kpoint_mp_spacing',
'bs_kpoint_list',
'bs_kpoint_path',
'bs_kpoints_mp_grid',
'bs_kpoints_mp_spacing',
'bs_kpoints_list',
'bs_kpoints_path'},
{'spectral_kpoint_mp_grid',
'spectral_kpoint_mp_spacing',
'spectral_kpoint_list',
'spectral_kpoint_path',
'spectral_kpoints_mp_grid',
'spectral_kpoints_mp_spacing',
'spectral_kpoints_list',
'spectral_kpoints_path'},
{'phonon_kpoint_mp_grid',
'phonon_kpoint_mp_spacing',
'phonon_kpoint_list',
'phonon_kpoint_path',
'phonon_kpoints_mp_grid',
'phonon_kpoints_mp_spacing',
'phonon_kpoints_list',
'phonon_kpoints_path'},
{'fine_phonon_kpoint_mp_grid',
'fine_phonon_kpoint_mp_spacing',
'fine_phonon_kpoint_list',
'fine_phonon_kpoint_path'},
{'magres_kpoint_mp_grid',
'magres_kpoint_mp_spacing',
'magres_kpoint_list',
'magres_kpoint_path'},
{'elnes_kpoint_mp_grid',
'elnes_kpoint_mp_spacing',
'elnes_kpoint_list',
'elnes_kpoint_path'},
{'optics_kpoint_mp_grid',
'optics_kpoint_mp_spacing',
'optics_kpoint_list',
'optics_kpoint_path'},
{'supercell_kpoint_mp_grid',
'supercell_kpoint_mp_spacing',
'supercell_kpoint_list',
'supercell_kpoint_path'}, ]
def __init__(self, castep_keywords, keyword_tolerance=1):
self._castep_version = castep_keywords.castep_version
CastepInputFile.__init__(self, castep_keywords.CastepCellDict(),
keyword_tolerance)
@property
def castep_version(self):
return self._castep_version
# .cell specific parsers
def _parse_species_pot(self, value):
# Single tuple
if isinstance(value, tuple) and len(value) == 2:
value = [value]
# List of tuples
if hasattr(value, '__getitem__'):
pspots = [tuple(map(str.strip, x)) for x in value]
if not all(map(lambda x: len(x) == 2, value)):
warnings.warn(
'Please specify pseudopotentials in python as '
'a tuple or a list of tuples formatted like: '
'(species, file), e.g. ("O", "path-to/O_OTFG.usp") '
'Anything else will be ignored')
return None
text_block = self._options['species_pot'].value
text_block = text_block if text_block else ''
# Remove any duplicates
for pp in pspots:
text_block = re.sub(fr'\n?\s*{pp[0]}\s+.*', '', text_block)
if pp[1]:
text_block += '\n%s %s' % pp
return text_block
def _parse_symmetry_ops(self, value):
if not isinstance(value, tuple) \
or not len(value) == 2 \
or not value[0].shape[1:] == (3, 3) \
or not value[1].shape[1:] == (3,) \
or not value[0].shape[0] == value[1].shape[0]:
warnings.warn('Invalid symmetry_ops block, skipping')
return
# Now on to print...
text_block = ''
for op_i, (op_rot, op_tranls) in enumerate(zip(*value)):
text_block += '\n'.join([' '.join([str(x) for x in row])
for row in op_rot])
text_block += '\n'
text_block += ' '.join([str(x) for x in op_tranls])
text_block += '\n\n'
return text_block
def _parse_positions_abs_intermediate(self, value):
return _parse_tss_block(value)
def _parse_positions_abs_product(self, value):
return _parse_tss_block(value)
def _parse_positions_frac_intermediate(self, value):
return _parse_tss_block(value, True)
def _parse_positions_frac_product(self, value):
return _parse_tss_block(value, True)
class ConversionError(Exception):
"""Print customized error for options that are not converted correctly
and point out that they are maybe not implemented, yet"""
def __init__(self, key_type, attr, value):
Exception.__init__(self)
self.key_type = key_type
self.value = value
self.attr = attr
def __str__(self):
contact_email = 'simon.rittmeyer@tum.de'
return f'Could not convert {self.attr} = {self.value} '\
+ 'to {self.key_type}\n' \
+ 'This means you either tried to set a value of the wrong\n'\
+ 'type or this keyword needs some special care. Please feel\n'\
+ 'to add it to the corresponding __setattr__ method and send\n'\
+ f'the patch to {(contact_email)}, so we can all benefit.'
|