File: output.py

package info (click to toggle)
python-ase 3.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,484 kB
  • sloc: python: 148,112; xml: 2,728; makefile: 110; javascript: 47
file content (231 lines) | stat: -rw-r--r-- 7,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# fmt: off

import re

import numpy as np

from ase.units import Angstrom, Bohr, Debye, Hartree, eV


class OctopusIOError(IOError):
    pass  # Cannot find output files


def read_eigenvalues_file(fd):
    unit = None

    for line in fd:
        m = re.match(r'Eigenvalues\s*\[(.+?)\]', line)
        if m is not None:
            unit = m.group(1)
            break
    line = next(fd)
    assert line.strip().startswith('#st'), line

    # fermilevel = None
    kpts = []
    eigs = []
    occs = []

    for line in fd:
        m = re.match(r'#k.*?\(\s*(.+?),\s*(.+?),\s*(.+?)\)', line)
        if m:
            k = m.group(1, 2, 3)
            kpts.append(np.array(k, float))
            eigs.append({})
            occs.append({})
        else:
            m = re.match(r'\s*\d+\s*(\S+)\s*(\S+)\s*(\S+)', line)
            if m is None:
                m = re.match(r'Fermi energy\s*=\s*(\S+)\s*', line)
                assert m is not None
                # We can also return the fermilevel but so far we just read
                # it from the static/info instead.
                # fermilevel = float(m.group(1))
            else:
                spin, eig, occ = m.group(1, 2, 3)

                if not eigs:
                    # Only initialized if kpoint header was written
                    eigs.append({})
                    occs.append({})

                eigs[-1].setdefault(spin, []).append(float(eig))
                occs[-1].setdefault(spin, []).append(float(occ))

    nkpts = len(kpts)
    nspins = len(eigs[0])
    nbands = len(eigs[0][spin])

    kptsarr = np.array(kpts, float)
    eigsarr = np.empty((nkpts, nspins, nbands))
    occsarr = np.empty((nkpts, nspins, nbands))

    arrs = [eigsarr, occsarr]

    for arr in arrs:
        arr.fill(np.nan)

    for k in range(nkpts):
        for arr, lst in [(eigsarr, eigs), (occsarr, occs)]:
            arr[k, :, :] = [lst[k][sp] for sp
                            in (['--'] if nspins == 1 else ['up', 'dn'])]

    for arr in arrs:
        assert not np.isnan(arr).any()

    eigsarr *= {'H': Hartree, 'eV': eV}[unit]
    return kptsarr, eigsarr, occsarr


def read_static_info_stress(fd):
    stress_cv = np.empty((3, 3))

    headers = next(fd)
    assert headers.strip().startswith('T_{ij}')
    for i in range(3):
        line = next(fd)
        tokens = line.split()
        vec = np.array(tokens[1:4]).astype(float)
        stress_cv[i] = vec
    return stress_cv


def read_static_info_kpoints(fd):
    for line in fd:
        if line.startswith('List of k-points'):
            break

    tokens = next(fd).split()
    assert tokens == ['ik', 'k_x', 'k_y', 'k_z', 'Weight']
    bar = next(fd)
    assert bar.startswith('---')

    kpts = []
    weights = []

    for line in fd:
        # Format:        index   kx      ky      kz     weight
        m = re.match(r'\s*\d+\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)', line)
        if m is None:
            break
        kxyz = m.group(1, 2, 3)
        weight = m.group(4)
        kpts.append(kxyz)
        weights.append(weight)

    ibz_kpoints = np.array(kpts, float)
    kpoint_weights = np.array(weights, float)
    return dict(ibz_kpoints=ibz_kpoints, kpoint_weights=kpoint_weights)


def read_static_info_eigenvalues(fd, energy_unit):

    values_sknx = {}

    nbands = 0
    fermilevel = None
    for line in fd:
        line = line.strip()
        if line.startswith('#'):
            continue
        if not line[:1].isdigit():
            m = re.match(r'Fermi energy\s*=\s*(\S+)', line)
            if m is not None:
                fermilevel = float(m.group(1)) * energy_unit
            break

        tokens = line.split()
        nbands = max(nbands, int(tokens[0]))
        energy = float(tokens[2]) * energy_unit
        occupation = float(tokens[3])
        values_sknx.setdefault(tokens[1], []).append((energy, occupation))

    nspins = len(values_sknx)
    if nspins == 1:
        val = [values_sknx['--']]
    else:
        val = [values_sknx['up'], values_sknx['dn']]
    val = np.array(val, float)
    nkpts, remainder = divmod(len(val[0]), nbands)
    assert remainder == 0

    eps_skn = val[:, :, 0].reshape(nspins, nkpts, nbands)
    occ_skn = val[:, :, 1].reshape(nspins, nkpts, nbands)
    eps_skn = eps_skn.transpose(1, 0, 2).copy()
    occ_skn = occ_skn.transpose(1, 0, 2).copy()
    assert eps_skn.flags.contiguous
    d = dict(nspins=nspins,
             nkpts=nkpts,
             nbands=nbands,
             eigenvalues=eps_skn,
             occupations=occ_skn)
    if fermilevel is not None:
        d.update(fermi_level=fermilevel)
    return d


def read_static_info_energy(fd, energy_unit):
    def get(name):
        for line in fd:
            if line.strip().startswith(name):
                return float(line.split('=')[-1].strip()) * energy_unit
    return dict(energy=get('Total'), free_energy=get('Free'))


def read_static_info(fd):
    results = {}

    def get_energy_unit(line):  # Convert "title [unit]": ---> unit
        return {'[eV]': eV, '[H]': Hartree}[line.split()[1].rstrip(':')]

    for line in fd:
        if line.strip('*').strip().startswith('Brillouin zone'):
            results.update(read_static_info_kpoints(fd))
        elif line.startswith('Eigenvalues ['):
            unit = get_energy_unit(line)
            results.update(read_static_info_eigenvalues(fd, unit))
        elif line.startswith('Energy ['):
            unit = get_energy_unit(line)
            results.update(read_static_info_energy(fd, unit))
        elif line.startswith('Total stress tensor ['):
            if '[H/b^3]' in line:
                stress = read_static_info_stress(fd)
                stress *= Hartree / Bohr**3
                results.update(stress=stress)
        elif line.startswith('Total Magnetic Moment'):
            line = next(fd)
            values = line.split()
            results['magmom'] = float(values[-1])
            line = next(fd)
            assert line.startswith('Local Magnetic Moments')
            line = next(fd)
            assert line.split() == ['Ion', 'mz']
            # Reading  Local Magnetic Moments
            magmoms = []
            for line in fd:
                if line == '\n':
                    break  # there is no more thing to search for
                line = line.replace('\n', ' ')
                values = line.split()
                magmoms.append(float(values[-1]))
            results['magmoms'] = np.array(magmoms)
        elif line.startswith('Dipole'):
            assert line.split()[-1] == '[Debye]'
            dipole = [float(next(fd).split()[-1]) for i in range(3)]
            results['dipole'] = np.array(dipole) * Debye
        elif line.startswith('Forces'):
            forceunitspec = line.split()[-1]
            forceunit = {'[eV/A]': eV / Angstrom,
                         '[H/b]': Hartree / Bohr}[forceunitspec]
            forces = []
            line = next(fd)
            assert line.strip().startswith('Ion')
            for line in fd:
                if line.strip().startswith('---'):
                    break
                tokens = line.split()[-3:]
                forces.append([float(f) for f in tokens])
            results['forces'] = np.array(forces) * forceunit

    return results