1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
"""Berendsen NVT dynamics class."""
import warnings
from typing import Optional
import numpy as np
from ase import Atoms
from ase.md.md import MolecularDynamics
class NVTBerendsen(MolecularDynamics):
def __init__(
self,
atoms: Atoms,
timestep: float,
temperature: Optional[float] = None,
taut: Optional[float] = None,
fixcm: bool = True,
*,
temperature_K: Optional[float] = None,
**kwargs,
):
"""Berendsen (constant N, V, T) molecular dynamics.
Parameters
----------
atoms: Atoms object
The list of atoms.
timestep: float
The time step in ASE time units.
temperature: float
The desired temperature, in Kelvin.
temperature_K: float
Alias for *temperature*
taut: float
Time constant for Berendsen temperature coupling in ASE
time units.
fixcm: bool (optional)
If True, the position and momentum of the center of mass is
kept unperturbed. Default: True.
**kwargs : dict, optional
Additional arguments passed to :class:~ase.md.md.MolecularDynamics
base class.
"""
if 'communicator' in kwargs:
msg = (
'`communicator` has been deprecated since ASE 3.25.0 '
'and will be removed in ASE 3.26.0. Use `comm` instead.'
)
warnings.warn(msg, FutureWarning)
kwargs['comm'] = kwargs.pop('communicator')
MolecularDynamics.__init__(self, atoms, timestep, **kwargs)
if taut is None:
raise TypeError("Missing 'taut' argument.")
self.taut = taut
self.temperature = self._process_temperature(
temperature, temperature_K, 'K'
)
self.fix_com = fixcm # will the center of mass be held fixed?
def set_taut(self, taut):
self.taut = taut
def get_taut(self):
return self.taut
def set_temperature(self, temperature=None, *, temperature_K=None):
self.temperature = self._process_temperature(
temperature, temperature_K, 'K'
)
def get_temperature(self):
return self.temperature
def set_timestep(self, timestep):
self.dt = timestep
def get_timestep(self):
return self.dt
def scale_velocities(self):
"""Do the NVT Berendsen velocity scaling"""
tautscl = self.dt / self.taut
old_temperature = self.atoms.get_temperature()
scl_temperature = np.sqrt(
1.0 + (self.temperature / old_temperature - 1.0) * tautscl
)
# Limit the velocity scaling to reasonable values
if scl_temperature > 1.1:
scl_temperature = 1.1
if scl_temperature < 0.9:
scl_temperature = 0.9
p = self.atoms.get_momenta()
p = scl_temperature * p
self.atoms.set_momenta(p)
return
def step(self, forces=None):
"""Move one timestep forward using Berenden NVT molecular dynamics."""
self.scale_velocities()
# one step velocity verlet
atoms = self.atoms
if forces is None:
forces = atoms.get_forces(md=True)
p = self.atoms.get_momenta()
p += 0.5 * self.dt * forces
if self.fix_com:
# calculate the center of mass
# momentum and subtract it
psum = p.sum(axis=0) / float(len(p))
p = p - psum
self.atoms.set_positions(
self.atoms.get_positions()
+ self.dt * p / self.atoms.get_masses()[:, np.newaxis]
)
# We need to store the momenta on the atoms before calculating
# the forces, as in a parallel Asap calculation atoms may
# migrate during force calculations, and the momenta need to
# migrate along with the atoms. For the same reason, we
# cannot use self.masses in the line above.
self.atoms.set_momenta(p)
forces = self.atoms.get_forces(md=True)
atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * forces)
return forces
|