1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
# fmt: off
import functools
import re
from collections import Counter
from dataclasses import dataclass
from fractions import Fraction
from itertools import chain, combinations, product
from typing import List, Tuple, Union
import numpy as np
from scipy.linalg import null_space
from ase.formula import Formula
from ase.units import kB
CONST = kB * np.log(10) # Nernst constant
PREDEF_ENERGIES = { # Default chemical potentials
'H+': 0.0, # for water, protons and electrons
'e-': 0.0,
'H2O': -2.4583
}
U_STD_AGCL = 0.222 # Standard redox potential of AgCl electrode
U_STD_SCE = 0.244 # Standard redox potential of SCE electrode
def parse_formula(formula: str, fmt: str = 'metal'):
aq = formula.endswith('(aq)')
charge = formula.count('+') - formula.count('-')
formula_strip = formula.replace('(aq)', '').rstrip('+-')
formula_obj = Formula(formula_strip, format=fmt)
return formula_obj, charge, aq
def initialize_refs(refs_dct, reduce=False, fmt='metal'):
"""Convert dictionary entries to Species instances"""
refs = {}
for label, energy in refs_dct.items():
spec = Species.from_string(label, energy, reduce, fmt)
refs[label] = spec
return refs
def get_product_combos(reactant, refs):
"""Obtain all possible combinations of products.
Obtain - from the available references and based
on the stoichiometry of the target material (reactant) -
different combinations of products to be inserted
in (electro)chemical reactions.
"""
ref_elem = reactant._main_elements
allcombos = [[] for _ in range(len(ref_elem))]
for ref in refs.values():
contained = ref.contains(ref_elem)
for w in np.argwhere(contained).flatten():
allcombos[w].append(ref)
return [np.unique(combo) for combo in product(*allcombos)]
def get_phases(reactant, refs, T, conc, reference, tol=1e-3):
"""Obtain all the possible decomposition pathways
for a given reactant as a collection of RedOx objects.
"""
phases = []
phase_matrix = []
for products in get_product_combos(reactant, refs):
phase = RedOx.from_species(
reactant, products, T, conc, reference, tol
)
if phase is not None:
phases.append(phase)
phase_matrix.append(phase._vector)
if len(phase_matrix) == 0:
raise ValueError(
"No valid decomposition pathways have been found" +
" given this set of references."
)
return phases, np.array(phase_matrix).astype('float64')
def get_main_products(count):
"""Obtain the reaction products excluded protons,
water and electrons.
"""
return [spec for spec, coef in count.items()
if coef > 0 and spec not in ['H+', 'H2O', 'e-']]
def format_label(count) -> str:
"""Obtain phase labels formatted in LaTeX math style."""
formatted = []
for prod in get_main_products(count):
label = re.sub(r'(\S)([+-]+)', r'\1$^{\2}$', prod)
label = re.sub(r'(\d+)', r'$_{\1}$', label)
for symbol in ['+', '-']:
count = label.count(symbol)
if count > 1:
label = label.replace(count * symbol, f'{count}{symbol}')
if count == 1:
label = label.replace(count * symbol, symbol)
formatted.append(label)
return ', '.join(f for f in formatted)
def make_coeff_nice(coeff, max_denom) -> str:
"""Convert a fraction into a string while limiting the denominator"""
frac = abs(Fraction(coeff).limit_denominator(max_denom))
if frac.numerator == frac.denominator:
return ''
return str(frac)
def add_numbers(ax, text) -> None:
"""Add number identifiers to the different domains of a Pourbaix diagram."""
import matplotlib.patheffects as pfx
for i, (x, y, _) in enumerate(text):
txt = ax.text(
y, x, f'{i}',
fontsize=20,
horizontalalignment='center'
)
txt.set_path_effects([pfx.withStroke(linewidth=2.0, foreground='w')])
def add_labels(ax, text) -> None:
"""Add phase labels to the different domains of a Pourbaix diagram."""
import matplotlib.patheffects as pfx
for i, (x, y, species) in enumerate(text):
label = format_label(species)
annotation = ax.annotate(
label, xy=(y, x), color='w',
fontsize=16, horizontalalignment='center'
)
annotation.set_path_effects(
[pfx.withStroke(linewidth=2.0, foreground='k')]
)
annotation.draggable()
ax.add_artist(annotation)
def wrap_text(text) -> str:
import textwrap
textlines = []
for i, (_, _, species) in enumerate(text):
label = format_label(species)
textlines.append(
textwrap.fill(
f'({i}) {label}',
width=40,
subsequent_indent=' '
)
)
return '\n'.join(textlines)
def add_phase_labels(fig, text, offset=0.0):
"""Add phase labels to the right of the diagram"""
fig.text(
0.75 + offset, 0.5,
wrap_text(text),
fontsize=16,
va='center',
ha='left')
def add_redox_lines(axes, pH, reference, color='k') -> None:
"""Add water redox potentials to a Pourbaix diagram"""
const = -0.5 * PREDEF_ENERGIES['H2O']
corr = {
'SHE': 0,
'RHE': 0,
'Pt': 0,
'AgCl': -U_STD_AGCL,
'SCE': -U_STD_SCE,
}
kwargs = {
'c': color,
'ls': '--',
'zorder': 2
}
if reference in ['SHE', 'AgCl', 'SCE']:
slope = -59.2e-3
axes.plot(pH, slope * pH + corr[reference], **kwargs)
axes.plot(pH, slope * pH + const + corr[reference], **kwargs)
elif reference in ['Pt', 'RHE']:
axes.axhline(0 + corr[reference], **kwargs)
axes.axhline(const + corr[reference], **kwargs)
else:
raise ValueError('The specified reference electrode doesnt exist')
@functools.total_ordering
class Species:
"""Class representing an individual chemical species,
grouping relevant properties.
Initialization
--------------
name: str
A label representing the species
formula: Formula
charge: int
the electric charge of the species, if ionic
aq: bool
whether the species is solid (False)
or acqueous (True)
energy: float
the chemical potential of the species
"""
def __init__(self,
name: str,
formula: Formula,
charge: int,
aq: bool,
energy: float):
self.name = name
self.formula = formula
self.energy = energy
self.charge = charge
self.aq = aq
self.count = formula.count()
self.natoms = sum(self.count.values())
self._main_elements = [
e for e in self.count.keys() if e not in ['H', 'O']
]
def __eq__(self, other):
if not isinstance(other, Species):
return NotImplemented
return self.name == other.name
def __lt__(self, other):
if not isinstance(other, Species):
return NotImplemented
return self.name < other.name
@classmethod
def from_string(cls, string: str, energy: float,
reduce: bool = True, fmt: str = 'metal'):
"""Initialize the class provided a formula and an energy.
string: str
The chemical formula of the species (e.g. ``ZnO``).
For solid species, the formula is automatically reduced to the
unit formula, and the chemical potential normalized accordingly.
Acqueous species are specified by expliciting
all the positive or negative charges and by appending ``(aq)``.
Parentheses for grouping functional groups are acceptable.
e.g.
Be3(OH)3[3+] ➜ wrong
Be3(OH)3+++ ➜ wrong
Be3(OH)3+++(aq) ➜ correct
Be3O3H3+++(aq) ➜ correct
energy: float
the energy (chemical potential) associated with the species.
reduce: bool
reduce to the unit formula and normalize the energy accordingly.
Formulae and energies of acqueous species are never reduced.
fmt: str
Formula formatting according to the available options in
ase.formula.Formula
"""
formula, charge, aq = parse_formula(string, fmt=fmt)
if not aq:
if reduce:
formula, n_fu = formula.reduce()
energy /= n_fu
name = str(formula)
else:
name = string
return cls(name, formula, charge, aq, energy)
def get_chemsys(self):
"""Get the possible combinations of elements based
on the stoichiometry. Useful for database queries.
"""
elements = set(self.count.keys())
elements.update(['H', 'O'])
chemsys = list(
chain.from_iterable(
[combinations(elements, i + 1)
for i in range(len(elements))]
)
)
return chemsys
def balance_electrochemistry(self):
"""Obtain number of H2O, H+, e- "carried" by the species
in electrochemical reactions.
"""
n_H2O = -self.count.get('O', 0)
n_H = -2 * n_H2O - self.count.get('H', 0)
n_e = n_H + self.charge
return n_H2O, n_H, n_e
def _count_array(self, elements):
return np.array([self.count.get(e, 0) for e in elements])
def contains(self, elements):
return [elem in self._main_elements for elem in elements]
def get_fractional_composition(self, elements):
"""Obtain the fractional content of each element."""
N_all = sum(self.count.values())
N_elem = sum([self.count.get(e, 0) for e in elements])
return N_elem / N_all
def __repr__(self):
return f'Species({self.name})'
class RedOx:
def __init__(self, species, coeffs,
T=298.15, conc=1e-6,
reference='SHE'):
"""RedOx class representing an (electro)chemical reaction.
Initialization
--------------
species: list[Species]
The reactant and products excluded H2O, protons and electrons.
coeffs: list[float]
The stoichiometric coefficients of the above species.
Positive coefficients are associated with the products,
negative coefficients with the reactants.
T: float
The temperature in Kelvin. Default: 298.15 K.
conc: float
The concentration of ionic species. Default: 1.0e-6 M.
reference: str
The reference electrode. Default: SHE.
available options: SHE, RHE, AgCl, Pt.
Relevant methods
----------------
from_species(reactant, products, T, conc, reference)
Initialize the class from the reactant as a Species object
and the product(s) a list of Species objects.
equation()
Print the chemical equation of the reaction.
get_free_energy(U, pH):
Obtain the reaction free energy at a given
applied potential (U) and pH.
"""
self.species = species
self.coeffs = coeffs
self.T = T
self.conc = conc
self.reference = reference
self.count = Counter()
alpha = CONST * T # 0.059 eV @ T=298.15K
const_term = 0
pH_term = 0
U_term = 0
for spec, coef in zip(species, coeffs):
self.count[spec.name] = coef
amounts = spec.balance_electrochemistry()
const_term += coef * (
spec.energy + alpha * (spec.aq * np.log10(conc))
)
pH_term += - coef * alpha * amounts[1]
U_term += - coef * amounts[2]
for name, n in zip(['H2O', 'H+', 'e-'], amounts):
const_term += coef * n * PREDEF_ENERGIES[name]
self.count[name] += coef * n
const_corr, pH_corr = self.get_ref_correction(reference, alpha)
self._vector = [
float(const_term + const_corr),
float(U_term),
float(pH_term + pH_corr)
]
@classmethod
def from_species(cls, reactant, products,
T: float = 298.15, conc: float = 1e-6,
reference: str = 'SHE', tol: float = 1e-3):
"""Initialize the class from a combination of
reactant and products. The stoichiometric
coefficients are automatically determined.
reactant: Species
products: list[Species]
"""
reac_elem = reactant._main_elements
reac_count = [-reactant._count_array(reac_elem)]
prod_count = [p._count_array(reac_elem) for p in products]
elem_matrix = np.array(reac_count + prod_count).T
coeffs = null_space(elem_matrix).flatten()
if len(coeffs) > 0 and all(coeffs > tol):
coeffs /= coeffs[0]
coeffs[0] = -coeffs[0]
species = (reactant, *products)
phase = cls(species, coeffs, T, conc, reference)
return phase
return None
def get_ref_correction(self, reference: str,
alpha: float) -> Tuple[float, float]:
"""Correct the constant and pH contributions to the reaction free energy
based on the reference electrode of choice and the temperature
(alpha=k_B*T*ln(10))
"""
n_e = self.count['e-']
gibbs_corr = 0.0
pH_corr = 0.0
if reference in ['RHE', 'Pt']:
pH_corr += n_e * alpha
if reference == 'Pt' and n_e < 0:
gibbs_corr += n_e * 0.5 * PREDEF_ENERGIES['H2O']
if reference == 'AgCl':
gibbs_corr -= n_e * U_STD_AGCL
if reference == 'SCE':
gibbs_corr -= n_e * U_STD_SCE
return gibbs_corr, pH_corr
def equation(self, max_denom: int = 50) -> str:
"""Print the chemical reaction."""
reactants = []
products = []
for s, n in self.count.items():
if abs(n) <= 1e-6:
continue
nice_coeff = make_coeff_nice(n, max_denom)
substr = f'{nice_coeff}{s}'
if n > 0:
products.append(substr)
else:
reactants.append(substr)
return " ➜ ".join([" + ".join(reactants), " + ".join(products)])
def get_free_energy(self, U: float, pH: float) -> float:
"""Evaluate the reaction free energy
at a given applied potential U and pH"""
return self._vector[0] + self._vector[1] * U + self._vector[2] * pH
class Pourbaix:
"""Pourbaix class for acqueous stability evaluations.
Allows to determine the most stable phase in a given set
of pH and potential conditions and to evaluate a complete diagram.
Initialization
--------------
material_name: str
The formula of the target material. It is preferrable
to provide the reduced formula (e.g. RuO2 instad of Ru2O4).
refs_dct: dict
A dictionary containing the formulae of the target material
and its competing phases (solid and/or ionic) as keys,
and their formation energies as values.
T: float
Temperature in Kelvin. Default: 298.15 K.
conc: float
Concentration of the ionic species. Default: 1e-6 mol/L.
reference: str
The reference electrode. Default: SHE.
available options: SHE, RHE, AgCl, Pt.
Relevant methods
----------------
get_pourbaix_energy(U, pH)
obtain the energy of the target material
relative to the most stable phase at a given potential U and pH.
If negative, the target material can be regarded as stable.
plot(...)
plot a complete Pourbaix diagram in a given pH and potential window.
Relevant attributes
-------------------
material: Species
the target material as a Species object
phases: list[RedOx]
the available decomposition reactions of the target material
into its competing phases as a list of RedOx objects.
"""
def __init__(self,
material_name: str,
refs_dct: dict,
T: float = 298.15,
conc: float = 1.0e-6,
reference: str = 'SHE'):
self.material_name = material_name
self.refs = refs_dct
self.T = T
self.conc = conc
self.reference = reference
refs = initialize_refs(refs_dct)
self.material = refs.pop(material_name)
self.phases, phase_matrix = get_phases(
self.material, refs, T, conc, reference
)
self._const = phase_matrix[:, 0]
self._var = phase_matrix[:, 1:]
def _decompose(self, U, pH):
"""Evaluate the reaction energy for decomposing
the target material into each of the available products
at a given pH and applied potential.
"""
return self._const + np.dot(self._var, [U, pH])
def _get_pourbaix_energy(self, U, pH):
"""Evaluate the Pourbaix energy"""
energies = self._decompose(U, pH)
i_min = np.argmin(energies)
return -energies[i_min], i_min
def get_pourbaix_energy(self, U, pH, verbose=False):
"""Evaluate the Pourbaix energy, print info about
the most stable phase and the corresponding energy at
a given potential U and pH.
The Pourbaix energy represents the energy of the target material
relative to the most stable competing phase. If negative,
the target material can be considered as stable.
"""
energy, index = self._get_pourbaix_energy(U, pH)
phase = self.phases[index]
if verbose:
if energy <= 0.0:
print(f'{self.material.name} is stable.')
else:
print(f'Stable phase: \n{phase.equation()}')
print(f'Energy: {energy:.3f} eV')
return energy, phase
def get_equations(self, contains: Union[str, None] = None):
"""Print the chemical reactions of the available phases.
the argument `contains' allows to filter for phases containing a
particular species
e.g. get_equations(contains='ZnO')
"""
equations = []
for i, p in enumerate(self.phases):
if contains is not None and contains not in p.count:
continue
equations.append(f'{i}) {p.equation()}')
return equations
def diagram(self, U=None, pH=None):
"""Actual evaluation of the complete diagram
Returns
-------
pour:
The stability domains of the diagram on the pH vs. U grid.
domains are represented by indexes (as integers)
that map to Pourbaix.phases
the target material is stable (index=-1)
meta:
The Pourbaix energy on the pH vs. U grid.
text:
The coordinates and phases information for
text placement on the diagram.
domains:
...
"""
pour = np.zeros((len(U), len(pH)))
meta = pour.copy()
for i, u in enumerate(U):
for j, p in enumerate(pH):
meta[i, j], pour[i, j] = self._get_pourbaix_energy(u, p)
# Identifying the region where the target material
# is stable and updating the diagram accordingly
where_stable = (meta <= 0)
pour[where_stable] = -1
text = []
domains = [int(i) for i in np.unique(pour)]
for phase_id in domains:
if phase_id == -1:
where = where_stable
txt = {self.material.name: 1}
else:
where = (pour == phase_id)
phase = self.phases[int(phase_id)]
txt = phase.count
x = np.dot(where.sum(1), U) / where.sum()
y = np.dot(where.sum(0), pH) / where.sum()
text.append((x, y, txt))
return PourbaixDiagram(self, U, pH, pour, meta, text, domains)
def get_phase_boundaries(self, phmin, phmax, umin, umax, domains, tol=1e-6):
"""Plane intersection method for finding
the boundaries between phases seen in the final plot.
Returns a list of tuples, each representing a single boundary,
of the form ([[x1, x2], [y1, y2]], [id1, id2]), namely the
x and y coordinates of the simplices connected by the boundary
and the id's of the phases at each side of the boundary.
"""
from collections import defaultdict
from itertools import combinations
# Planes identifying the diagram frame
planes = [(np.array([0.0, 1.0, 0.0]), umin, 'bottom'),
(np.array([0.0, 1.0, 0.0]), umax, 'top'),
(np.array([1.0, 0.0, 0.0]), phmin, 'left'),
(np.array([1.0, 0.0, 0.0]), phmax, 'right')]
# Planes associated with the stable domains of the diagram.
# Given x=pH, y=U, z=E_pbx=-DeltaG, each plane has expression:
# _vector[2]*x + _vector[1]*y + z = -_vector[0]
# The region where the target material is stable
# (id=-1, if present) is delimited by the xy plane (Epbx=0)
for d in domains:
if d == -1:
plane = np.array([0.0, 0.0, 1.0])
const = 0.0
else:
pvec = self.phases[d]._vector
plane = np.array([pvec[2], pvec[1], 1])
const = -pvec[0]
planes.append((plane, const, d))
# The simplices are found from the intersection points between
# all possible plane triplets. If the z coordinate of the point
# matches the corresponding pourbaix energy,
# then the point is a simplex.
simplices = []
for (p1, c1, id1), (p2, c2, id2), (p3, c3, id3) in \
combinations(planes, 3):
A = np.vstack((p1, p2, p3))
c = np.array([c1, c2, c3])
ids = (id1, id2, id3)
try:
# triplets containing parallel planes raise a LinAlgError
# and are automatically excluded.
invA = np.linalg.inv(A)
except np.linalg.LinAlgError:
continue
pt = np.dot(invA, c)
Epbx = self._get_pourbaix_energy(pt[1], pt[0])[0]
if pt[2] >= -tol and \
np.isclose(Epbx, pt[2], rtol=0, atol=tol) and \
phmin - tol <= pt[0] <= phmax + tol and \
umin - tol <= pt[1] <= umax + tol:
simplex = np.round(pt[:2], 3)
simplices.append((simplex, ids))
# The final segments to plot on the diagram are found from
# the pairs of unique simplices that have two neighboring phases
# in common, diagram frame excluded.
duplicate_filter = defaultdict(int)
def are_boundaries_there(comm):
bounds = ['bottom', 'top', 'left', 'right']
for c in comm:
if c in bounds:
return True
return False
for (s1, id1), (s2, id2) in combinations(simplices, 2):
# common neighboring phases, diagram frame excluded
common = {*id1} & {*id2}
simplices_are_distinct = not np.allclose(s1, s2, rtol=0, atol=tol)
only_two_phases_in_common = (len(common) == 2)
diagram_frame_excluded = not are_boundaries_there(common)
# Filtering out duplicates
if all([simplices_are_distinct, only_two_phases_in_common,
diagram_frame_excluded]):
testarray = sorted([s1, s2], key=lambda s: (s[0], s[1]))
testarray.append(sorted(common))
testarray = np.array(testarray).flatten()
duplicate_filter[tuple(testarray)] += 1
segments = []
for segment in duplicate_filter:
coords, phases = np.split(np.array(segment), [4])
segments.append((
coords.reshape(2, 2).T,
list(phases.astype(int))
))
return segments
@dataclass
class PourbaixDiagram:
pbx: Pourbaix
U: np.ndarray
pH: np.ndarray
pour: np.ndarray
meta: np.ndarray
text: List[Tuple[float, float, str]]
domains: List[int]
def __post_init__(self):
def _issorted(array):
return all(np.diff(array) > 0)
# We might as well require the input domains to be sorted:
if not _issorted(self.U):
raise ValueError('U must be sorted')
if not _issorted(self.pH):
raise ValueError('pH must be sorted')
@property
def pHrange(self):
return (self.pH[0], self.pH[-1])
@property
def Urange(self):
return (self.U[0], self.U[-1])
def _draw_diagram_axes(
self,
cap,
normalize,
include_text,
include_water,
labeltype, cmap, *,
ax):
"""Backend for drawing Pourbaix diagrams."""
meta = self.meta.copy()
if normalize:
meta /= self.pbx.material.natoms
cbarlabel = r'$\Delta G_{pbx}$ (eV/atom)'
else:
cbarlabel = r'$\Delta G_{pbx}$ (eV)'
fig = ax.get_figure()
extent = [*self.pHrange, *self.Urange]
fig.subplots_adjust(
left=0.1, right=0.97,
top=0.97, bottom=0.14
)
if isinstance(cap, list):
vmin = cap[0]
vmax = cap[1]
else:
vmin = -cap
vmax = cap
colorplot = ax.imshow(
meta, cmap=cmap,
extent=extent,
vmin=vmin, vmax=vmax,
origin='lower', aspect='auto',
interpolation='gaussian'
)
cbar = fig.colorbar(
colorplot,
ax=ax,
pad=0.02
)
bounds = self.pbx.get_phase_boundaries(
*self.pHrange, *self.Urange, self.domains
)
for coords, _ in bounds:
ax.plot(coords[0], coords[1], '-', c='k', lw=1.0)
if labeltype == 'numbers':
add_numbers(ax, self.text)
elif labeltype == 'phases':
add_labels(ax, self.text)
elif labeltype is None:
pass
else:
raise ValueError("The provided label type doesn't exist")
if include_water:
add_redox_lines(ax, self.pH, self.pbx.reference, 'w')
ax.set_xlim(*self.pHrange)
ax.set_ylim(*self.Urange)
ax.set_xlabel('pH', fontsize=22)
ax.set_ylabel(r'$\it{U}$' + f' vs. {self.pbx.reference} (V)',
fontsize=22)
ax.set_xticks(np.arange(self.pHrange[0], self.pHrange[1] + 1, 2))
ax.set_yticks(np.arange(self.Urange[0], self.Urange[1] + 1, 1))
ax.xaxis.set_tick_params(width=1.5, length=5)
ax.yaxis.set_tick_params(width=1.5, length=5)
ax.tick_params(axis='both', labelsize=22)
ticks = np.linspace(vmin, vmax, num=5)
cbar.set_ticks(ticks)
cbar.set_ticklabels(ticks)
cbar.outline.set_linewidth(1.5)
cbar.ax.tick_params(labelsize=20, width=1.5, length=5)
cbar.ax.set_ylabel(cbarlabel, fontsize=20)
for axis in ['top', 'bottom', 'left', 'right']:
ax.spines[axis].set_linewidth(1.5)
if include_text:
fig.subplots_adjust(right=0.75)
add_phase_labels(fig, self.text, offset=0.05)
return ax, cbar
fig.tight_layout()
return cbar
def plot(self,
cap=1.0,
# figsize=[12, 6],
normalize=True,
include_text=True,
include_water=False,
labeltype='numbers',
cmap="RdYlGn_r",
filename=None,
ax=None,
show=False):
"""Plot a complete Pourbaix diagram.
Keyword arguments
-----------------
Urange: list
The potential range onto which to draw the diagram.
pHrange: list
The pH range onto which to draw the diagram.
npoints: int
The resolution of the diagram. Higher values
mean higher resolution and thus higher compute times.
cap: float/list
If float, the limit (in both the positive and negative direction)
of the Pourbaix energy colormap.
If list, the first and second value determine the colormap limits.
figsize: list
The horizontal and vertical size of the graph.
normalize: bool
Normalize energies by the number of
atoms in the target material unit formula.
include_text: bool
Report to the right of the diagram the main products
associated with the stability domains.
include_water: bool
Include in the diagram the stability domain of water.
labeltype: str/None
The labeling style of the diagram domains. Options:
'numbers': just add numbers associated with the
different phases, the latter shown
on the right if include_text=True.
'phases': Write the main products directly on the diagram.
These labels can be dragged around if the placement
is unsatisfactory. Redundant if include_text=True.
None: Don't draw any labels.
filename: str/None
If passed as a string, the figure will be saved with that name.
show: bool
Spawn a window showing the diagram.
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
fig = ax.get_figure()
self._draw_diagram_axes(
cap,
normalize,
include_text,
include_water,
labeltype, cmap,
ax=ax)
if filename is not None:
fig.savefig(filename)
if show:
plt.show()
|