1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
# fmt: off
import numpy as np
class Quaternion:
def __init__(self, qin=[1, 0, 0, 0]):
assert len(qin) == 4
self.q = np.array(qin)
def __str__(self):
return self.q.__str__()
def __mul__(self, other):
sw, sx, sy, sz = self.q
ow, ox, oy, oz = other.q
return Quaternion([sw * ow - sx * ox - sy * oy - sz * oz,
sw * ox + sx * ow + sy * oz - sz * oy,
sw * oy + sy * ow + sz * ox - sx * oz,
sw * oz + sz * ow + sx * oy - sy * ox])
def conjugate(self):
return Quaternion(-self.q * np.array([-1., 1., 1., 1.]))
def rotate(self, vector):
"""Apply the rotation matrix to a vector."""
qw, qx, qy, qz = self.q[0], self.q[1], self.q[2], self.q[3]
x, y, z = vector[0], vector[1], vector[2]
ww = qw * qw
xx = qx * qx
yy = qy * qy
zz = qz * qz
wx = qw * qx
wy = qw * qy
wz = qw * qz
xy = qx * qy
xz = qx * qz
yz = qy * qz
return np.array(
[(ww + xx - yy - zz) * x + 2 * ((xy - wz) * y + (xz + wy) * z),
(ww - xx + yy - zz) * y + 2 * ((xy + wz) * x + (yz - wx) * z),
(ww - xx - yy + zz) * z + 2 * ((xz - wy) * x + (yz + wx) * y)])
def rotation_matrix(self):
qw, qx, qy, qz = self.q[0], self.q[1], self.q[2], self.q[3]
ww = qw * qw
xx = qx * qx
yy = qy * qy
zz = qz * qz
wx = qw * qx
wy = qw * qy
wz = qw * qz
xy = qx * qy
xz = qx * qz
yz = qy * qz
return np.array([[ww + xx - yy - zz, 2 * (xy - wz), 2 * (xz + wy)],
[2 * (xy + wz), ww - xx + yy - zz, 2 * (yz - wx)],
[2 * (xz - wy), 2 * (yz + wx), ww - xx - yy + zz]])
def axis_angle(self):
"""Returns axis and angle (in radians) for the rotation described
by this Quaternion"""
sinth_2 = np.linalg.norm(self.q[1:])
if sinth_2 == 0:
# The angle is zero
theta = 0.0
n = np.array([0, 0, 1])
else:
theta = np.arctan2(sinth_2, self.q[0]) * 2
n = self.q[1:] / sinth_2
return n, theta
def euler_angles(self, mode='zyz'):
"""Return three Euler angles describing the rotation, in radians.
Mode can be zyz or zxz. Default is zyz."""
# https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276302
if mode == 'zyz':
a, b, c, d = self.q[0], self.q[3], self.q[2], -self.q[1]
elif mode == 'zxz':
a, b, c, d = self.q[0], self.q[3], self.q[1], self.q[2]
else:
raise ValueError(f'Invalid Euler angles mode {mode}')
beta = 2 * np.arccos(
np.sqrt((a**2 + b**2) / (a**2 + b**2 + c**2 + d**2))
)
gap = np.arctan2(b, a) # (gamma + alpha) / 2
gam = np.arctan2(d, c) # (gamma - alpha) / 2
if np.isclose(beta, 0):
# gam is meaningless here
alpha = 0
gamma = 2 * gap - alpha
elif np.isclose(beta, np.pi):
# gap is meaningless here
alpha = 0
gamma = 2 * gam + alpha
else:
alpha = gap - gam
gamma = gap + gam
return np.array([alpha, beta, gamma])
def arc_distance(self, other):
"""Gives a metric of the distance between two quaternions,
expressed as 1-|q1.q2|"""
return 1.0 - np.abs(np.dot(self.q, other.q))
@staticmethod
def rotate_byq(q, vector):
"""Apply the rotation matrix to a vector."""
qw, qx, qy, qz = q[0], q[1], q[2], q[3]
x, y, z = vector[0], vector[1], vector[2]
ww = qw * qw
xx = qx * qx
yy = qy * qy
zz = qz * qz
wx = qw * qx
wy = qw * qy
wz = qw * qz
xy = qx * qy
xz = qx * qz
yz = qy * qz
return np.array(
[(ww + xx - yy - zz) * x + 2 * ((xy - wz) * y + (xz + wy) * z),
(ww - xx + yy - zz) * y + 2 * ((xy + wz) * x + (yz - wx) * z),
(ww - xx - yy + zz) * z + 2 * ((xz - wy) * x + (yz + wx) * y)])
@staticmethod
def from_matrix(matrix):
"""Build quaternion from rotation matrix."""
m = np.array(matrix)
assert m.shape == (3, 3)
# Now we need to find out the whole quaternion
# This method takes into account the possibility of qw being nearly
# zero, so it picks the stablest solution
if m[2, 2] < 0:
if (m[0, 0] > m[1, 1]):
# Use x-form
qx = np.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2]) / 2.0
fac = 1.0 / (4 * qx)
qw = (m[2, 1] - m[1, 2]) * fac
qy = (m[0, 1] + m[1, 0]) * fac
qz = (m[0, 2] + m[2, 0]) * fac
else:
# Use y-form
qy = np.sqrt(1 - m[0, 0] + m[1, 1] - m[2, 2]) / 2.0
fac = 1.0 / (4 * qy)
qw = (m[0, 2] - m[2, 0]) * fac
qx = (m[0, 1] + m[1, 0]) * fac
qz = (m[1, 2] + m[2, 1]) * fac
else:
if (m[0, 0] < -m[1, 1]):
# Use z-form
qz = np.sqrt(1 - m[0, 0] - m[1, 1] + m[2, 2]) / 2.0
fac = 1.0 / (4 * qz)
qw = (m[1, 0] - m[0, 1]) * fac
qx = (m[2, 0] + m[0, 2]) * fac
qy = (m[1, 2] + m[2, 1]) * fac
else:
# Use w-form
qw = np.sqrt(1 + m[0, 0] + m[1, 1] + m[2, 2]) / 2.0
fac = 1.0 / (4 * qw)
qx = (m[2, 1] - m[1, 2]) * fac
qy = (m[0, 2] - m[2, 0]) * fac
qz = (m[1, 0] - m[0, 1]) * fac
return Quaternion(np.array([qw, qx, qy, qz]))
@staticmethod
def from_axis_angle(n, theta):
"""Build quaternion from axis (n, vector of 3 components) and angle
(theta, in radianses)."""
n = np.array(n, float) / np.linalg.norm(n)
return Quaternion(np.concatenate([[np.cos(theta / 2.0)],
np.sin(theta / 2.0) * n]))
@staticmethod
def from_euler_angles(a, b, c, mode='zyz'):
"""Build quaternion from Euler angles, given in radians. Default
mode is ZYZ, but it can be set to ZXZ as well."""
q_a = Quaternion.from_axis_angle([0, 0, 1], a)
q_c = Quaternion.from_axis_angle([0, 0, 1], c)
if mode == 'zyz':
q_b = Quaternion.from_axis_angle([0, 1, 0], b)
elif mode == 'zxz':
q_b = Quaternion.from_axis_angle([1, 0, 0], b)
else:
raise ValueError(f'Invalid Euler angles mode {mode}')
return q_c * q_b * q_a
|