1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
# fmt: off
"""Tests for NeighborList"""
import numpy as np
import pytest
from ase import Atoms
from ase.build import bulk
from ase.neighborlist import (
NeighborList,
NewPrimitiveNeighborList,
PrimitiveNeighborList,
)
@pytest.mark.parametrize(
'primitive',
[PrimitiveNeighborList, NewPrimitiveNeighborList],
)
@pytest.mark.parametrize('bothways', [False, True])
@pytest.mark.parametrize('self_interaction', [False, True])
@pytest.mark.parametrize('sorted', [False, True])
def test_unique(
sorted: bool,
self_interaction: bool,
bothways: bool,
primitive,
):
"""Test if there are no duplicates in the neighbor lists"""
atoms = Atoms('H2', positions=[(0, 0, 0), (0, 0, 1)])
nl = NeighborList(
[0.5, 0.5],
skin=0.1,
sorted=sorted,
self_interaction=self_interaction,
bothways=bothways,
primitive=primitive,
)
nl.update(atoms)
tmp = []
for i in range(len(atoms)):
neighbors, offsets = nl.get_neighbors(i)
tmp += [(i, n, *o) for n, o in zip(neighbors, offsets)]
assert len(set(tmp)) == len(tmp)
def count(nl: NeighborList, atoms: Atoms):
"""Count the numbers of neighboring atoms for all the atoms
Returns
-------
d : float
Sum of distances over all nearest-neighbor pairs
c : npt.NDArray[np.int_]
Numbers of neighboring atoms for all the atoms
"""
c = np.zeros(len(atoms), int)
R = atoms.get_positions()
cell = atoms.get_cell()
d = 0.0
for a in range(len(atoms)):
i, offsets = nl.get_neighbors(a)
for j in i:
c[j] += 1
c[a] += len(i)
d += (((R[i] + np.dot(offsets, cell) - R[a])**2).sum(1)**0.5).sum()
return d, c
# scipy sparse uses matrix subclass internally
@pytest.mark.filterwarnings('ignore:the matrix subclass')
@pytest.mark.slow()
@pytest.mark.parametrize('sorted', [False, True])
def test_supercell(sorted):
"""Test if NeighborList works for a supercell as expected"""
atoms = Atoms(numbers=range(10),
cell=[(0.2, 1.2, 1.4),
(1.4, 0.1, 1.6),
(1.3, 2.0, -0.1)])
rng = np.random.RandomState(42)
atoms.set_scaled_positions(3 * rng.random((10, 3)) - 1)
for p1 in range(2):
for p2 in range(2):
for p3 in range(2):
# print(p1, p2, p3)
atoms.set_pbc((p1, p2, p3))
cutoffs = atoms.numbers * 0.2 + 0.5
nl = NeighborList(cutoffs, skin=0.0, sorted=sorted)
nl.update(atoms)
d, c = count(nl, atoms)
atoms2 = atoms.repeat((p1 + 1, p2 + 1, p3 + 1))
cutoffs2 = atoms2.numbers * 0.2 + 0.5
nl2 = NeighborList(cutoffs2, skin=0.0, sorted=sorted)
nl2.update(atoms2)
d2, c2 = count(nl2, atoms2)
c2.shape = (-1, 10) # row: images, column: atoms
# if the sum of nearest-neighbor distances gets larger
# according to the supercell size
dd = d * (p1 + 1) * (p2 + 1) * (p3 + 1) - d2
assert abs(dd) < 1e-10
# if each repeated image has the same numbers of neighbors
assert not (c2 - c).any()
def test_H2():
h2 = Atoms('H2', positions=[(0, 0, 0), (0, 0, 1)])
nl = NeighborList([0.5, 0.5], skin=0.1, sorted=True, self_interaction=False)
nl2 = NeighborList([0.5, 0.5], skin=0.1, sorted=True,
self_interaction=False,
primitive=NewPrimitiveNeighborList)
assert nl2.update(h2)
assert nl.update(h2)
assert not nl.update(h2)
assert (nl.get_neighbors(0)[0] == [1]).all()
m = np.zeros((2, 2))
m[0, 1] = 1
assert np.array_equal(nl.get_connectivity_matrix(sparse=False), m)
assert np.array_equal(nl.get_connectivity_matrix(sparse=True).todense(), m)
assert np.array_equal(nl.get_connectivity_matrix().todense(),
nl2.get_connectivity_matrix().todense())
h2[1].z += 0.09
assert not nl.update(h2)
assert (nl.get_neighbors(0)[0] == [1]).all()
h2[1].z += 0.09
assert nl.update(h2)
assert (nl.get_neighbors(0)[0] == []).all()
assert nl.nupdates == 2
def test_H2_shape_and_type():
h2 = Atoms('H2', positions=[(0, 0, 0), (0, 0, 1)])
nl = NeighborList([0.1, 0.1], skin=0.1, bothways=True,
self_interaction=False)
assert nl.update(h2)
assert nl.get_neighbors(0)[1].shape == (0, 3)
assert nl.get_neighbors(0)[1].dtype == int
def test_fcc():
x = bulk('X', 'fcc', a=2**0.5)
nl = NeighborList([0.5], skin=0.01, bothways=True, self_interaction=False)
nl.update(x)
assert len(nl.get_neighbors(0)[0]) == 12
nl = NeighborList([0.5] * 27, skin=0.01, bothways=True,
self_interaction=False)
nl.update(x * (3, 3, 3))
for a in range(27):
assert len(nl.get_neighbors(a)[0]) == 12
assert not np.any(nl.get_neighbors(13)[1])
def test_use_scaled_positions():
c = 0.0058
for NeighborListClass in [PrimitiveNeighborList, NewPrimitiveNeighborList]:
nl = NeighborListClass([c, c],
skin=0.0,
sorted=True,
self_interaction=False,
use_scaled_positions=True)
nl.update([True, True, True],
np.eye(3) * 7.56,
np.array([[0, 0, 0],
[0, 0, 0.99875]]))
n0, d0 = nl.get_neighbors(0)
n1, d1 = nl.get_neighbors(1)
# != is xor
assert (np.all(n0 == [0]) and np.all(d0 == [0, 0, 1])) != \
(np.all(n1 == [1]) and np.all(d1 == [0, 0, -1]))
def test_empty_neighbor_list():
# Test empty neighbor list
nl = PrimitiveNeighborList([])
nl.update([True, True, True],
np.eye(3) * 7.56,
np.zeros((0, 3)))
@pytest.mark.parametrize('bothways', [False, True])
@pytest.mark.parametrize('self_interaction', [False, True])
@pytest.mark.parametrize('sort', [False, True])
def test_equivalence_of_primitive_classes(sort, self_interaction, bothways):
"""Test if two primitive neighbor-list classes make the same naighbors"""
# diamond structure in the primitive cell
pbc_c = np.array([True, True, True])
cell_cv = np.array([[0., 3.37316113, 3.37316113],
[3.37316113, 0., 3.37316113],
[3.37316113, 3.37316113, 0.]])
spos_ac = np.array([[0., 0., 0.],
[0.25, 0.25, 0.25]])
natoms = len(spos_ac)
cutoff_a = np.array([8.0, 8.0])
info = [[] for _ in range(2)] # neighbor info collector for each primitive
primitives = [PrimitiveNeighborList, NewPrimitiveNeighborList]
for ip, primitive in enumerate(primitives):
nl = primitive(
cutoff_a,
skin=0.0,
sorted=sort,
self_interaction=self_interaction,
bothways=bothways,
use_scaled_positions=True,
)
nl.update(pbc_c, cell_cv, spos_ac)
# collect neighbor info into a list of tuples
# each tuple has the form (i1, i2, o1, o2, o3)
# i1: 1st atom
# i2: 2nd atom
# o1: offset along 1st cell vector
# o2: offset along 2nd cell vector
# o3: offset along 3rd cell vector
for i in range(natoms):
info[ip].extend([(i, n, *o) for n, o in zip(*nl.get_neighbors(i))])
def reverse(t: tuple):
return t[1], t[0], -t[2], -t[3], -t[4]
for ip in range(2):
# (i1, i2, +o1, +o2, +o3) and (i2, i1, -o1, -o2, -o3) is the same pair
# the following guarantees i0 <= i1
info[ip] = [t if t[0] <= t[1] else reverse(t) for t in info[ip]]
info[ip] = sorted(info[ip]) # sort by i1, i2, o1, o2, o3
# check if the both primitive classes provide the same neighbors
assert np.all(info[0] == info[1])
def test_small_cell_and_large_cutoff():
# See: https://gitlab.com/ase/ase/-/issues/441
cutoff = 50
atoms = bulk('Cu', 'fcc', a=3.6)
atoms *= (2, 2, 2)
atoms.set_pbc(False)
radii = cutoff * np.ones(len(atoms.get_atomic_numbers()))
neighborhood_new = NeighborList(
radii, skin=0.0, self_interaction=False, bothways=True,
primitive=NewPrimitiveNeighborList
)
neighborhood_old = NeighborList(
radii, skin=0.0, self_interaction=False, bothways=True,
primitive=PrimitiveNeighborList
)
neighborhood_new.update(atoms)
neighborhood_old.update(atoms)
n0, d0 = neighborhood_new.get_neighbors(0)
n1, d1 = neighborhood_old.get_neighbors(0)
assert np.all(n0 == n1)
assert np.all(d0 == d1)
|