1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
# fmt: off
import numpy as np
import pytest
from ase.quaternions import Quaternion
TEST_N = 200
def axang_rotm(u, theta):
u = np.array(u, float)
u /= np.linalg.norm(u)
# Cross product matrix for u
ucpm = np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]])
# Rotation matrix
rotm = (np.cos(theta) * np.identity(3) + np.sin(theta) * ucpm +
(1 - np.cos(theta)) * np.kron(u[:, None], u[None, :]))
return rotm
def rand_rotm(rng=np.random.RandomState(0)):
"""Axis & angle rotations."""
u = rng.random(3)
theta = rng.random() * np.pi * 2
return axang_rotm(u, theta)
def eulang_rotm(a, b, c, mode='zyz'):
rota = axang_rotm([0, 0, 1], a)
rotc = axang_rotm([0, 0, 1], c)
if mode == 'zyz':
rotb = axang_rotm([0, 1, 0], b)
elif mode == 'zxz':
rotb = axang_rotm([1, 0, 0], b)
return np.dot(rotc, np.dot(rotb, rota))
@pytest.fixture()
def rng():
return np.random.RandomState(0)
def test_quaternions_rotations(rng):
# First: test that rotations DO work
for _ in range(TEST_N):
# n random tests
rotm = rand_rotm(rng)
q = Quaternion.from_matrix(rotm)
assert np.allclose(rotm, q.rotation_matrix())
# Now test this with a vector
v = rng.random(3)
vrotM = np.dot(rotm, v)
vrotQ = q.rotate(v)
assert np.allclose(vrotM, vrotQ)
def test_quaternions_gimbal(rng):
# Second: test the special case of a PI rotation
rotm = np.identity(3)
rotm[:2, :2] *= -1 # Rotate PI around z axis
q = Quaternion.from_matrix(rotm)
assert not np.isnan(q.q).any()
def test_quaternions_overload(rng):
# Third: test compound rotations and operator overload
for _ in range(TEST_N):
rotm1 = rand_rotm(rng)
rotm2 = rand_rotm(rng)
q1 = Quaternion.from_matrix(rotm1)
q2 = Quaternion.from_matrix(rotm2)
assert np.allclose(np.dot(rotm2, rotm1),
(q2 * q1).rotation_matrix())
# Now test this with a vector
v = rng.random(3)
vrotM = np.dot(rotm2, np.dot(rotm1, v))
vrotQ = (q2 * q1).rotate(v)
assert np.allclose(vrotM, vrotQ)
@pytest.mark.parametrize('mode', ['zyz', 'zxz'])
def test_quaternions_euler(rng: np.random.RandomState, mode: str):
# Fourth: test Euler angles
for _ in range(TEST_N):
a, c = rng.uniform(-np.pi, np.pi, size=2)
b = rng.uniform(0, np.pi)
q_eul = Quaternion.from_euler_angles(a, b, c, mode=mode)
rot_eul = eulang_rotm(a, b, c, mode=mode)
assert np.allclose(rot_eul, q_eul.rotation_matrix())
# Test conversion back and forth
a2, b2, c2 = q_eul.euler_angles(mode=mode)
assert np.allclose([a2, b2, c2], [a, b, c])
q_eul_2 = Quaternion.from_euler_angles(a2, b2, c2, mode=mode)
assert np.allclose(q_eul_2.q, q_eul.q)
def test_quaternions_rotm(rng):
# Fifth: test that conversion back to rotation matrices works properly
for _ in range(TEST_N):
rotm1 = rand_rotm(rng)
rotm2 = rand_rotm(rng)
q1 = Quaternion.from_matrix(rotm1)
q2 = Quaternion.from_matrix(rotm2)
assert np.allclose(q1.rotation_matrix(), rotm1)
assert np.allclose(q2.rotation_matrix(), rotm2)
assert np.allclose((q1 * q2).rotation_matrix(), np.dot(rotm1, rotm2))
assert np.allclose((q1 * q2).rotation_matrix(), np.dot(rotm1, rotm2))
def test_quaternions_axang(rng):
# Sixth: test conversion to axis + angle
q = Quaternion()
n, theta = q.axis_angle()
assert theta == 0
u = np.array([1, 0.5, 1])
u /= np.linalg.norm(u)
alpha = 1.25
q = Quaternion.from_matrix(axang_rotm(u, alpha))
n, theta = q.axis_angle()
assert np.isclose(theta, alpha)
assert np.allclose(u, n)
@pytest.mark.parametrize(
'q,euler_angles,mode,rotation_matrix,axis,angle', [
# pi/2 rotation along z axis
(
np.array([np.cos(np.pi / 4), 0, 0, np.sin(np.pi / 4)]),
np.array([0, 0, np.pi / 2]), # We use alpha=0 for singular case
'zyz',
np.array([
[0, -1, 0],
[1, 0, 0],
[0, 0, 1],
]),
np.array([0, 0, 1]),
np.pi / 2,
),
# pi/2 rotation along x axis
(
np.array([np.cos(np.pi / 4), np.sin(np.pi / 4), 0, 0]),
np.array([np.pi / 2, np.pi / 2, -np.pi / 2]),
'zyz',
np.array([
[1, 0, 0],
[0, 0, -1],
[0, 1, 0],
]),
np.array([1, 0, 0]),
np.pi / 2,
),
]
)
def test_quaternions_special_cases(
q, euler_angles, mode, rotation_matrix, axis, angle
):
quaternions = [
Quaternion(q),
Quaternion.from_euler_angles(*euler_angles, mode=mode),
Quaternion.from_matrix(rotation_matrix),
Quaternion.from_axis_angle(axis, angle),
]
for quaternion in quaternions:
axis_actual, angle_actual = quaternion.axis_angle()
assert np.allclose(quaternion.q, q)
assert np.allclose(quaternion.euler_angles(), euler_angles)
assert np.allclose(quaternion.rotation_matrix(), rotation_matrix)
assert np.allclose(axis_actual, axis)
assert np.isclose(angle_actual, angle)
|