1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
# fmt: off
"""Resonant Raman intensities"""
import sys
from pathlib import Path
import numpy as np
import ase.units as u
from ase.parallel import paropen, parprint, world
from ase.vibrations import Vibrations
from ase.vibrations.raman import Raman, RamanCalculatorBase
class ResonantRamanCalculator(RamanCalculatorBase, Vibrations):
"""Base class for resonant Raman calculators using finite differences.
"""
def __init__(self, atoms, ExcitationsCalculator, *args,
exkwargs=None, exext='.ex.gz', overlap=False,
**kwargs):
"""
Parameters
----------
atoms: Atoms
The Atoms object
ExcitationsCalculator: object
Calculator for excited states
exkwargs: dict
Arguments given to the ExcitationsCalculator object
exext: string
Extension for filenames of Excitation lists (results of
the ExcitationsCalculator).
overlap : function or False
Function to calculate overlaps between excitation at
equilibrium and at a displaced position. Calculators are
given as first and second argument, respectively.
Example
-------
>>> from ase.calculators.h2morse import (H2Morse,
... H2MorseExcitedStatesCalculator)
>>> from ase.vibrations.resonant_raman import ResonantRamanCalculator
>>>
>>> atoms = H2Morse()
>>> rmc = ResonantRamanCalculator(atoms, H2MorseExcitedStatesCalculator)
>>> rmc.run()
This produces all necessary data for further analysis.
"""
self.exobj = ExcitationsCalculator
if exkwargs is None:
exkwargs = {}
self.exkwargs = exkwargs
self.overlap = overlap
super().__init__(atoms, *args, exext=exext, **kwargs)
def _new_exobj(self):
# XXXX I have to duplicate this because there are two objects
# which have exkwargs, why are they not unified?
return self.exobj(**self.exkwargs)
def calculate(self, atoms, disp):
"""Call ground and excited state calculation"""
assert atoms == self.atoms # XXX action required
forces = self.atoms.get_forces()
if self.overlap:
"""Overlap is determined as
ov_ij = int dr displaced*_i(r) eqilibrium_j(r)
"""
ov_nn = self.overlap(self.atoms.calc,
self.eq_calculator)
if world.rank == 0:
disp.save_ov_nn(ov_nn)
disp.calculate_and_save_exlist(atoms)
return {'forces': forces}
def run(self):
if self.overlap:
# XXXX stupid way to make a copy
self.atoms.get_potential_energy()
self.eq_calculator = self.atoms.calc
Path(self.name).mkdir(parents=True, exist_ok=True)
fname = Path(self.name) / 'tmp.gpw'
self.eq_calculator.write(fname, 'all')
self.eq_calculator = self.eq_calculator.__class__(restart=fname)
try:
# XXX GPAW specific
self.eq_calculator.converge_wave_functions()
except AttributeError:
pass
Vibrations.run(self)
class ResonantRaman(Raman):
"""Base Class for resonant Raman intensities using finite differences.
"""
def __init__(self, atoms, Excitations, *args,
observation=None,
form='v', # form of the dipole operator
exkwargs=None, # kwargs to be passed to Excitations
exext='.ex.gz', # extension for Excitation names
overlap=False,
minoverlap=0.02,
minrep=0.8,
comm=world,
**kwargs):
"""
Parameters
----------
atoms: ase Atoms object
Excitations: class
Type of the excitation list object. The class object is
initialized as::
Excitations(atoms.calc)
or by reading form a file as::
Excitations('filename', **exkwargs)
The file is written by calling the method
Excitations.write('filename').
Excitations should work like a list of ex obejects, where:
ex.get_dipole_me(form='v'):
gives the velocity form dipole matrix element in
units |e| * Angstrom
ex.energy:
is the transition energy in Hartrees
approximation: string
Level of approximation used.
observation: dict
Polarization settings
form: string
Form of the dipole operator, 'v' for velocity form (default)
and 'r' for length form.
overlap: bool or function
Use wavefunction overlaps.
minoverlap: float ord dict
Minimal absolute overlap to consider. Defaults to 0.02 to avoid
numerical garbage.
minrep: float
Minimal representation to consider derivative, defaults to 0.8
"""
if observation is None:
observation = {'geometry': '-Z(XX)Z'}
kwargs['exext'] = exext
Raman.__init__(self, atoms, *args, **kwargs)
assert self.vibrations.nfree == 2
self.exobj = Excitations
if exkwargs is None:
exkwargs = {}
self.exkwargs = exkwargs
self.observation = observation
self.dipole_form = form
self.overlap = overlap
if not isinstance(minoverlap, dict):
# assume it's a number
self.minoverlap = {'orbitals': minoverlap,
'excitations': minoverlap}
else:
self.minoverlap = minoverlap
self.minrep = minrep
def read_exobj(self, filename):
return self.exobj.read(filename, **self.exkwargs)
def get_absolute_intensities(self, omega, gamma=0.1, delta=0, **kwargs):
"""Absolute Raman intensity or Raman scattering factor
Parameter
---------
omega: float
incoming laser energy, unit eV
gamma: float
width (imaginary energy), unit eV
delta: float
pre-factor for asymmetric anisotropy, default 0
References
----------
Porezag and Pederson, PRB 54 (1996) 7830-7836 (delta=0)
Baiardi and Barone, JCTC 11 (2015) 3267-3280 (delta=5)
Returns
-------
raman intensity, unit Ang**4/amu
"""
alpha2_r, gamma2_r, delta2_r = self._invariants(
self.electronic_me_Qcc(omega, gamma, **kwargs))
return 45 * alpha2_r + delta * delta2_r + 7 * gamma2_r
@property
def approximation(self):
return self._approx
@approximation.setter
def approximation(self, value):
self.set_approximation(value)
def read_excitations(self):
"""Read all finite difference excitations and select matching."""
if self.overlap:
return self.read_excitations_overlap()
disp = self._eq_disp()
ex0_object = disp.read_exobj()
eu = ex0_object.energy_to_eV_scale
matching = frozenset(ex0_object)
def append(lst, disp, matching):
exo = disp.read_exobj()
lst.append(exo)
matching = matching.intersection(exo)
return matching
exm_object_list = []
exp_object_list = []
for a, i in zip(self.myindices, self.myxyz):
mdisp = self._disp(a, i, -1)
pdisp = self._disp(a, i, 1)
matching = append(exm_object_list,
mdisp, matching)
matching = append(exp_object_list,
pdisp, matching)
def select(exl, matching):
mlst = [ex for ex in exl if ex in matching]
assert len(mlst) == len(matching)
return mlst
ex0 = select(ex0_object, matching)
exm = []
exp = []
r = 0
for a, i in zip(self.myindices, self.myxyz):
exm.append(select(exm_object_list[r], matching))
exp.append(select(exp_object_list[r], matching))
r += 1
self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
self.ex0m_pc = (np.array(
[ex.get_dipole_me(form=self.dipole_form) for ex in ex0]) *
u.Bohr)
exmE_rp = []
expE_rp = []
exF_rp = []
exmm_rpc = []
expm_rpc = []
r = 0
for a, i in zip(self.myindices, self.myxyz):
exmE_rp.append([em.energy for em in exm[r]])
expE_rp.append([ep.energy for ep in exp[r]])
exF_rp.append(
[(em.energy - ep.energy)
for ep, em in zip(exp[r], exm[r])])
exmm_rpc.append(
[ex.get_dipole_me(form=self.dipole_form)
for ex in exm[r]])
expm_rpc.append(
[ex.get_dipole_me(form=self.dipole_form)
for ex in exp[r]])
r += 1
# indicees: r=coordinate, p=excitation
# energies in eV
self.exmE_rp = np.array(exmE_rp) * eu
self.expE_rp = np.array(expE_rp) * eu
# forces in eV / Angstrom
self.exF_rp = np.array(exF_rp) * eu / 2 / self.delta
# matrix elements in e * Angstrom
self.exmm_rpc = np.array(exmm_rpc) * u.Bohr
self.expm_rpc = np.array(expm_rpc) * u.Bohr
def read_excitations_overlap(self):
"""Read all finite difference excitations and wf overlaps.
We assume that the wave function overlaps are determined as
ov_ij = int dr displaced*_i(r) eqilibrium_j(r)
"""
ex0 = self._eq_disp().read_exobj()
eu = ex0.energy_to_eV_scale
rep0_p = np.ones((len(ex0)), dtype=float)
def load(disp, rep0_p):
ex_p = disp.read_exobj()
ov_nn = disp.load_ov_nn()
# remove numerical garbage
ov_nn = np.where(np.abs(ov_nn) > self.minoverlap['orbitals'],
ov_nn, 0)
ov_pp = ex_p.overlap(ov_nn, ex0)
ov_pp = np.where(np.abs(ov_pp) > self.minoverlap['excitations'],
ov_pp, 0)
rep0_p *= (ov_pp.real**2 + ov_pp.imag**2).sum(axis=0)
return ex_p, ov_pp
def rotate(ex_p, ov_pp):
e_p = np.array([ex.energy for ex in ex_p])
m_pc = np.array(
[ex.get_dipole_me(form=self.dipole_form) for ex in ex_p])
r_pp = ov_pp.T
return ((r_pp.real**2 + r_pp.imag**2).dot(e_p),
r_pp.dot(m_pc))
exmE_rp = []
expE_rp = []
exF_rp = []
exmm_rpc = []
expm_rpc = []
exdmdr_rpc = []
for a, i in zip(self.myindices, self.myxyz):
mdisp = self._disp(a, i, -1)
pdisp = self._disp(a, i, 1)
ex, ov = load(mdisp, rep0_p)
exmE_p, exmm_pc = rotate(ex, ov)
ex, ov = load(pdisp, rep0_p)
expE_p, expm_pc = rotate(ex, ov)
exmE_rp.append(exmE_p)
expE_rp.append(expE_p)
exF_rp.append(exmE_p - expE_p)
exmm_rpc.append(exmm_pc)
expm_rpc.append(expm_pc)
exdmdr_rpc.append(expm_pc - exmm_pc)
# select only excitations that are sufficiently represented
self.comm.product(rep0_p)
select = np.where(rep0_p > self.minrep)[0]
self.ex0E_p = np.array([ex.energy * eu for ex in ex0])[select]
self.ex0m_pc = (np.array(
[ex.get_dipole_me(form=self.dipole_form)
for ex in ex0])[select] * u.Bohr)
if len(self.myr):
# indicees: r=coordinate, p=excitation
# energies in eV
self.exmE_rp = np.array(exmE_rp)[:, select] * eu
self.expE_rp = np.array(expE_rp)[:, select] * eu
# forces in eV / Angstrom
self.exF_rp = np.array(exF_rp)[:, select] * eu / 2 / self.delta
# matrix elements in e * Angstrom
self.exmm_rpc = np.array(exmm_rpc)[:, select, :] * u.Bohr
self.expm_rpc = np.array(expm_rpc)[:, select, :] * u.Bohr
# matrix element derivatives in e
self.exdmdr_rpc = (np.array(exdmdr_rpc)[:, select, :] *
u.Bohr / 2 / self.delta)
else:
# did not read
self.exmE_rp = self.expE_rp = self.exF_rp = np.empty(0)
self.exmm_rpc = self.expm_rpc = self.exdmdr_rpc = np.empty(0)
def read(self, *args, **kwargs):
"""Read data from a pre-performed calculation."""
self.vibrations.read(*args, **kwargs)
self.init_parallel_read()
if not hasattr(self, 'ex0E_p'):
if self.overlap:
self.read_excitations_overlap()
else:
self.read_excitations()
self._already_read = True
def get_cross_sections(self, omega, gamma):
"""Returns Raman cross sections for each vibration."""
I_v = self.intensity(omega, gamma)
pre = 1. / 16 / np.pi**2 / u._eps0**2 / u._c**4
# frequency of scattered light
omS_v = omega - self.om_Q
return pre * omega * omS_v**3 * I_v
def get_spectrum(self, omega, gamma=0.1,
start=None, end=None, npts=None, width=20,
type='Gaussian',
intensity_unit='????', normalize=False):
"""Get resonant Raman spectrum.
The method returns wavenumbers in cm^-1 with corresponding
Raman cross section.
Start and end point, and width of the Gaussian/Lorentzian should
be given in cm^-1.
"""
self.type = type.lower()
assert self.type in ['gaussian', 'lorentzian']
frequencies = self.get_energies().real / u.invcm
intensities = self.get_cross_sections(omega, gamma)
if width is None:
return [frequencies, intensities]
if start is None:
start = min(self.om_Q) / u.invcm - 3 * width
if end is None:
end = max(self.om_Q) / u.invcm + 3 * width
if not npts:
npts = int((end - start) / width * 10 + 1)
prefactor = 1
if self.type == 'lorentzian':
intensities = intensities * width * np.pi / 2.
if normalize:
prefactor = 2. / width / np.pi
else:
sigma = width / 2. / np.sqrt(2. * np.log(2.))
if normalize:
prefactor = 1. / sigma / np.sqrt(2 * np.pi)
# Make array with spectrum data
spectrum = np.empty(npts)
energies = np.linspace(start, end, npts)
for i, energy in enumerate(energies):
energies[i] = energy
if self.type == 'lorentzian':
spectrum[i] = (intensities * 0.5 * width / np.pi /
((frequencies - energy)**2 +
0.25 * width**2)).sum()
else:
spectrum[i] = (intensities *
np.exp(-(frequencies - energy)**2 /
2. / sigma**2)).sum()
return [energies, prefactor * spectrum]
def write_spectrum(self, omega, gamma,
out='resonant-raman-spectra.dat',
start=200, end=4000,
npts=None, width=10,
type='Gaussian'):
"""Write out spectrum to file.
Start and end
point, and width of the Gaussian/Lorentzian should be given
in cm^-1."""
energies, spectrum = self.get_spectrum(omega, gamma,
start, end, npts, width,
type)
# Write out spectrum in file. First column is absolute intensities.
outdata = np.empty([len(energies), 3])
outdata.T[0] = energies
outdata.T[1] = spectrum
with paropen(out, 'w') as fd:
fd.write('# Resonant Raman spectrum\n')
if hasattr(self, '_approx'):
fd.write(f'# approximation: {self._approx}\n')
for key in self.observation:
fd.write(f'# {key}: {self.observation[key]}\n')
fd.write('# omega={:g} eV, gamma={:g} eV\n'
.format(omega, gamma))
if width is not None:
fd.write('# %s folded, width=%g cm^-1\n'
% (type.title(), width))
fd.write('# [cm^-1] [a.u.]\n')
for row in outdata:
fd.write('%.3f %15.5g\n' %
(row[0], row[1]))
def summary(self, omega, gamma=0.1,
method='standard', direction='central',
log=sys.stdout):
"""Print summary for given omega [eV]"""
self.read(method, direction)
hnu = self.get_energies()
intensities = self.get_absolute_intensities(omega, gamma)
te = int(np.log10(intensities.max())) - 2
scale = 10**(-te)
if not te:
ts = ''
elif te > -2 and te < 3:
ts = str(10**te)
else:
ts = f'10^{te}'
if isinstance(log, str):
log = paropen(log, 'a')
parprint('-------------------------------------', file=log)
parprint(' excitation at ' + str(omega) + ' eV', file=log)
parprint(' gamma ' + str(gamma) + ' eV', file=log)
parprint(' method:', self.vibrations.method, file=log)
parprint(' approximation:', self.approximation, file=log)
parprint(' Mode Frequency Intensity', file=log)
parprint(f' # meV cm^-1 [{ts}A^4/amu]', file=log)
parprint('-------------------------------------', file=log)
for n, e in enumerate(hnu):
if e.imag != 0:
c = 'i'
e = e.imag
else:
c = ' '
e = e.real
parprint('%3d %6.1f%s %7.1f%s %9.2f' %
(n, 1000 * e, c, e / u.invcm, c, intensities[n] * scale),
file=log)
parprint('-------------------------------------', file=log)
parprint('Zero-point energy: %.3f eV' %
self.vibrations.get_zero_point_energy(),
file=log)
class LrResonantRaman(ResonantRaman):
"""Resonant Raman for linear response
Quick and dirty approach to enable loading of LrTDDFT calculations
"""
def read_excitations(self):
eq_disp = self._eq_disp()
ex0_object = eq_disp.read_exobj()
eu = ex0_object.energy_to_eV_scale
matching = frozenset(ex0_object.kss)
def append(lst, disp, matching):
exo = disp.read_exobj()
lst.append(exo)
matching = matching.intersection(exo.kss)
return matching
exm_object_list = []
exp_object_list = []
for a in self.indices:
for i in 'xyz':
disp1 = self._disp(a, i, -1)
disp2 = self._disp(a, i, 1)
matching = append(exm_object_list,
disp1,
matching)
matching = append(exp_object_list,
disp2,
matching)
def select(exl, matching):
exl.diagonalize(**self.exkwargs)
mlist = list(exl)
# mlst = [ex for ex in exl if ex in matching]
# assert(len(mlst) == len(matching))
return mlist
ex0 = select(ex0_object, matching)
exm = []
exp = []
r = 0
for a in self.indices:
for i in 'xyz':
exm.append(select(exm_object_list[r], matching))
exp.append(select(exp_object_list[r], matching))
r += 1
self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
# self.exmE_p = np.array([ex.energy * eu for ex in exm])
# self.expE_p = np.array([ex.energy * eu for ex in exp])
self.ex0m_pc = (np.array(
[ex.get_dipole_me(form=self.dipole_form) for ex in ex0]) *
u.Bohr)
self.exF_rp = []
exmE_rp = []
expE_rp = []
exmm_rpc = []
expm_rpc = []
r = 0
for a in self.indices:
for i in 'xyz':
exmE_rp.append([em.energy for em in exm[r]])
expE_rp.append([ep.energy for ep in exp[r]])
self.exF_rp.append(
[(em.energy - ep.energy)
for ep, em in zip(exp[r], exm[r])])
exmm_rpc.append(
[ex.get_dipole_me(form=self.dipole_form) for ex in exm[r]])
expm_rpc.append(
[ex.get_dipole_me(form=self.dipole_form) for ex in exp[r]])
r += 1
self.exmE_rp = np.array(exmE_rp) * eu
self.expE_rp = np.array(expE_rp) * eu
self.exF_rp = np.array(self.exF_rp) * eu / 2 / self.delta
self.exmm_rpc = np.array(exmm_rpc) * u.Bohr
self.expm_rpc = np.array(expm_rpc) * u.Bohr
|