1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
.. module:: ase.calculators.emt
:synopsis: Effective Medium Theory
==========================
Pure Python EMT calculator
==========================
The EMT potential is included in the ASE package in order to have a
simple calculator that can be used for quick demonstrations and
tests.
.. warning::
If you want to do a real application using EMT, you should use the
*much* more efficient implementation in the ASAP_ calculator.
.. autoclass:: ase.calculators.emt.EMT
:class-doc-from: class
.. _ASAP: http://wiki.fysik.dtu.dk/asap
Theory
------
In the following, the seven parameters :math:`E_{0i}`, :math:`s_{0i}`,
:math:`V_{0i}`, :math:`\eta_{2i}`, :math:`\kappa_{i}`, :math:`\lambda_{i}`,
and :math:`n_{0i}` are specific for the species of atom :math:`i`.
Energy
^^^^^^
In the effective-medium theory (EMT), the energy is given by
.. math::
E = \sum_{i=1}^{N} (E_{\mathrm{c},i} + E_{\mathrm{AS},i})
The cohesive function :math:`E_{\mathrm{c},i}` describes the energy in the
reference system, where we assume the face-centered cubic (fcc) structure and
given by
.. math::
E_{\mathrm{c},i}
= E_{0i} f(\lambda_i (s_{i} - s_{0i}))
= E_{0i} f(\lambda_i \dot{s}_{i})
.. math::
f(x) = (1 + x) \exp(-x)
where :math:`E_{0i}` is the cohesive energy, :math:`s_{0i}` is the Wigner–Seitz
radius in the equilibrium fcc state, and :math:`\lambda_i` is related to the
curvature of the energy–volume curve and thus to the bulk modulus.
:math:`s_i` is the neutral-sphere radius, and
.. math::
\dot{s}_i
= s_{i} - s_{0i}
= - \frac{1}{\beta \eta_{2i}} \log \frac{\sigma_{1i}}{12 \gamma_{1i}}
where :math:`\beta` is the constant related to the Wigner–Seitz radius and the
first nearest neighbor distance (cf. `Tips`_).
:math:`\sigma_{1i}`` is given by
.. math::
\sigma_{1i}
= \sum_{j} \chi_{ij} w(r_{ij})
\exp(- \eta_{2j} (r_{ij} - \beta s_{0j}))
= \sum_{j} \dot{\sigma}_{1ij}^\mathrm{s}
The summation is over the neighbors of atom :math:`i`.
:math:`r_{ij}` is the distance of atoms :math:`i` and :math:`j` and given
using their position vectors :math:`\mathbf{r}_i` and :math:`\mathbf{r}_j` by
.. math::
r_{ij} = |\mathbf{r}_{ij}| = |\mathbf{r}_{j} - \mathbf{r}_i|
:math:`\chi_{ij}` is given by
.. math::
\chi_{ij} = \frac{n_{0j}}{n_{0i}}
The contribution from atom :math:`j` is given by
.. math::
\dot{\sigma}_{1ij}^\mathrm{s} = \chi_{ij} w(r_{ij})
\exp(- \eta_{2j} (r_{ij} - \beta s_{0j}))
For later convenience in `Forces`_, the contribution from atom :math:`i` to
atom :math:`j` is also written as;
.. math::
\dot{\sigma}_{1ij}^\mathrm{o} = \chi_{ji} w(r_{ij})
\exp(- \eta_{2i} (r_{ij} - \beta s_{0i}))
:math:`w(r)` is the smooth cutoff function given by
.. math::
w(r) = \frac{1}{1 + \exp(a (r - r_\mathrm{c}))}
:math:`\gamma_{1i}` is a correction factor when considering beyond the first
nearest neighbor sites and given by (cf. `Tips`_)
.. math::
\gamma_{1i} = \frac{1}{12} (
n^\mathrm{1NN} w(d_0^\mathrm{1NN}) \exp(\eta_{2i} (d_0^\mathrm{1NN} - \beta s_{0i})) +
n^\mathrm{2NN} w(d_0^\mathrm{2NN}) \exp(\eta_{2i} (d_0^\mathrm{2NN} - \beta s_{0i})) +
n^\mathrm{3NN} w(d_0^\mathrm{3NN}) \exp(\eta_{2i} (d_0^\mathrm{3NN} - \beta s_{0i})) +
\cdots
)
which is :math:`1` when considering only up to the first nearest neighbors of
the equilibrium fcc structure.
The atomic-sphere correction :math:`E_{\mathrm{AS},i}` describes the derivation
from the reference fcc system and given by
.. math::
E_{\mathrm{AS},i} = E_{\mathrm{AS},i}^{1} + E_{\mathrm{AS},i}^{2}
:math:`E_{\mathrm{AS},i}^{1}` is the pair interactions of the real system,
and :math:`E_{\mathrm{AS},i}^{2}` is the negative of the pair interactions of
the reference unary perfect fcc structure.
Both terms are described using the following pair interaction function;
.. math::
V_{ij} (r) = -V_{0i} \cdot \frac{1}{\gamma_{2i}} \chi_{ij} w(r)
\exp(-\frac{\kappa_{j}}{\beta}(r - \beta s_{0j}))
:math:`\gamma_{2i}` is a correction factor when considering beyond the first
nearest neighbor sites and given by (cf. `Tips`_)
.. math::
\gamma_{2i} = \frac{1}{12} (
n_\mathrm{1NN} w(d_\mathrm{1NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{1NN} - \beta s_{0i})) +
n_\mathrm{2NN} w(d_\mathrm{2NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{2NN} - \beta s_{0i})) +
n_\mathrm{3NN} w(d_\mathrm{3NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{3NN} - \beta s_{0i})) +
\cdots
)
Here, if we consider only up to the first nearest neighbors,
.. math::
\gamma_{2i} \rightarrow 1
For :math:`E_{\mathrm{AS},i}^{2}`, only the interactions up to the first
nearest neighbors are considered, i.e., :math:`j = i` and
:math:`r_{ij} = d^\mathrm{1NN} = \beta s_{i}`. Thus,
.. math::
E_{\mathrm{AS},i}^{2} = \frac{1}{2} n^\mathrm{1NN} V_{ii}(d^\mathrm{1NN})
= -\frac{12}{2} V_{ii} (\beta s_{i})
= 6 V_{0i} \exp(-\kappa_{i} \dot{s}_i)
The first term :math:`E_{\mathrm{AS},i}^{1}` is the pair interactions of the
real system. Here we consider the interactions up to a certain cutoff radius,
and we average the contribution from atom :math:`i` to atom :math:`j` and that
from atom :math:`j` to atom :math:`i`. Thus,
.. math::
E_{\mathrm{AS},i}^{1} = \frac{1}{2}
\sum_{j} \frac{1}{2} \left(V_{ij}(r_{ij}) + V_{ji}(r_{ij})\right)
= - \frac{V_{0i}}{2 \gamma_{2i}} \cdot \frac{1}{2} \sum_{j}
(\dot{\sigma}_{2ij}^\mathrm{s} + \dot{\sigma}_{2ij}^\mathrm{o})
where
.. math::
\dot{\sigma}_{2ij}^\mathrm{s}
= \chi_{ij} w(r_{ij})
\exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j}))
.. math::
\dot{\sigma}_{2ij}^\mathrm{o}
= \chi_{ji} w(r_{ij})
\exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i}))
and further for unary perfect fcc systems,
Forces
^^^^^^
The forces on atom :math:`i` can be computed as
.. math::
\mathbf{F}_{i}
= -\nabla_i E
= \sum_j \frac{\partial E}{\partial r_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}}
= \sum_j \mathbf{f}_{ij}
where the force applied on atom :math:`i` by atom :math:`j` is given by
.. math::
\mathbf{f}_{ij}
= \frac{\partial E}{\partial r_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}}
The derivative of :math:`E` with respect to :math:`r_{ij}` is further written
as
.. math::
\frac{\partial E}{\partial r_{ij}} = \left(
\frac{\partial E_{\mathrm{c},i}}{\partial r_{ij}} +
\frac{\partial E_{\mathrm{c},j}}{\partial r_{ij}} +
\frac{\partial E_{\mathrm{AS},i}^2}{\partial r_{ij}} +
\frac{\partial E_{\mathrm{AS},j}^2}{\partial r_{ij}} \right) + \left(
\frac{\partial E_{\mathrm{AS},i}^1}{\partial r_{ij}} +
\frac{\partial E_{\mathrm{AS},j}^1}{\partial r_{ij}} \right)
Be careful that we also need to consider the contribution of the energy term
associated to atom :math:`j`.
The first terms depend on :math:`r_{ij}` indirectly via `s_{i}` and `s_{j}`.
.. math::
\frac{\partial E_{\mathrm{c},i}}{\partial r_{ij}} =
\frac{\partial E_{\mathrm{c},i}}{\partial s_{i}}
\frac{\partial s_i}{\partial \sigma_{1i}}
\frac{\partial \sigma_{1i}}{\partial r_{ij}}
.. math::
\frac{\partial E_{\mathrm{c},j}}{\partial r_{ij}} =
\frac{\partial E_{\mathrm{c},j}}{\partial s_{j}}
\frac{\partial s_j}{\partial \sigma_{1j}}
\frac{\partial \sigma_{1j}}{\partial r_{ij}}
.. math::
\frac{\partial E_{\mathrm{AS},i}^2}{\partial r_{ij}} =
\frac{\partial E_{\mathrm{AS},i}^2}{\partial s_{i}}
\frac{\partial s_i}{\partial \sigma_{1i}}
\frac{\partial \sigma_{1i}}{\partial r_{ij}}
.. math::
\frac{\partial E_{\mathrm{AS},j}^2}{\partial r_{ij}} =
\frac{\partial E_{\mathrm{AS},j}^2}{\partial s_{j}}
\frac{\partial s_j}{\partial \sigma_{1j}}
\frac{\partial \sigma_{1j}}{\partial r_{ij}}
They can be computed using
.. math::
\frac{\partial E_{\mathrm{c},i}}{\partial s_i}
= - E_{0i} \lambda_i^2 \dot{s}_i \exp(-\lambda_i \dot{s}_i)
.. math::
\frac{\partial E_\mathrm{AS}^2}{\partial s_i}
= -6 V_{0i} \kappa_i \exp(-\kappa_i \dot{s}_i)
.. math::
\frac{\mathrm{d}s_i}{\mathrm{d}\sigma_{1i}}
= \frac{\mathrm{d}\dot{s}_i}{\mathrm{d}\sigma_{1i}}
= -\frac{1}{\beta\eta_{2i}} \frac{1}{\sigma_{1i}}
.. math::
\frac{\partial \sigma_{1i}}{\partial r_{ij}}
= \chi_{ij}
\left(
\frac{\partial w}{\partial r_{ij}}
\exp(-\eta_{2j} (r_{ij} - \beta s_{0j})) -
w(r_{ij}) \eta_{2j}
\exp(-\eta_{2j} (r_{ij} - \beta s_{0j}))
\right)
= \left(
\frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} -
\eta_{2j}
\right) \dot{\sigma}_{1ij}^\mathrm{s}
.. math::
\frac{\partial \sigma_{1j}}{\partial r_{ij}}
= \chi_{ji}
\left(
\frac{\partial w}{\partial r_{ij}}
\exp(-\eta_{2i} (r_{ij} - \beta s_{0i})) -
w(r_{ij}) \eta_{2i}
\exp(-\eta_{2i} (r_{ij} - \beta s_{0i}))
\right)
= \left(
\frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} -
\eta_{2i}
\right) \dot{\sigma}_{1ij}^\mathrm{o}
The second part directly depends on :math:`r_{ij}` and given by
.. math::
\frac{\partial E_{\mathrm{AS},i}^1}{\partial r_{ij}} +
\frac{\partial E_{\mathrm{AS},j}^1}{\partial r_{ij}}
= - \frac{1}{2} \left(
\frac{V_{0i}}{2 \gamma_{2i}} \frac{\partial \dot{\sigma}_{2ij}^\mathrm{s}}{\partial r_{ij}} +
\frac{V_{0j}}{2 \gamma_{2j}} \frac{\partial \dot{\sigma}_{2ij}^\mathrm{o}}{\partial r_{ij}}
\right)
where
.. math::
\frac{\partial \dot{\sigma}_{2ij}^\mathrm{s}}{\partial r_{ij}}
= \chi_{ij}
\left(
\frac{\partial w}{\partial r_{ij}}
\exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j})) -
w(r_{ij}) \frac{\kappa_j}{\beta}
\exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j}))
\right)
= \left(
\frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} -
\frac{\kappa_j}{\beta}
\right)
\dot{\sigma}_{2ij}^\mathrm{s}
.. math::
\frac{\partial \dot{\sigma}_{2ij}^\mathrm{o}}{\partial r_{ij}}
= \chi_{ji}
\left(
\frac{\partial w}{\partial r_{ij}}
\exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i})) -
w(r_{ij}) \frac{\kappa_i}{\beta}
\exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i}))
\right)
= \left(
\frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} -
\frac{\kappa_i}{\beta}
\right)
\dot{\sigma}_{2ij}^\mathrm{o}
Note that
.. math::
\frac{\mathrm{d}w}{\mathrm{d}r} = a w(r) (w(r) - 1)
Stress
^^^^^^
The static part of the virial stress can be given as
.. math::
\tau^{\alpha \beta}
= \frac{1}{\Omega} \frac{1}{2}
\sum_{i=1}^{N} \sum_{j \neq i} r_{ij}^{\alpha} f_{ij}^{\beta}
= \frac{1}{\Omega}
\sum_{i=1}^{N} \sum_{j > i} r_{ij}^{\alpha} f_{ij}^{\beta}
where :math:`\alpha` and :math:`\beta` are indices for Cartesian components.
When considering all the neighbors for each atom, we should not forget the
factor :math:`1/2`.
Tips
^^^^
For the fcc structure, the numbers of neighbor sites and the
distances of first several shells are
.. math::
:wowrap:
n^\mathrm{1NN} &= 12, & \quad d^\mathrm{1NN} &= \beta s_{i} \\
n^\mathrm{2NN} &= \phantom{0}6, & \quad d^\mathrm{2NN} &= \sqrt{2}\,d^\mathrm{1NN} \\
n^\mathrm{3NN} &= 24, & \quad d^\mathrm{3NN} &= \sqrt{3}\,d^\mathrm{1NN} \\
n^\mathrm{4NN} &= 12, & \quad d^\mathrm{4NN} &= \sqrt{4}\,d^\mathrm{1NN} \\
n^\mathrm{5NN} &= 24, & \quad d^\mathrm{5NN} &= \sqrt{5}\,d^\mathrm{1NN}
where :math:`s_{i}` is the Wigner–Seitz radius of the species of atom
:math:`i` and :math:`\beta = 2^{-1/2} (16 \pi / 3)^{1/3} \approx 1.809`.
|