1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
.. module:: ase.calculators.turbomole
=========
TURBOMOLE
=========
TURBOMOLE_ is a program package for *ab initio* electronic structure calculations.
This interface integrates the TURBOMOLE code as a calculator in ASE.
.. _Turbomole: http://www.turbomole.com/
Setting up the environment
==========================
The TURBOMOLE package must be installed to use it with ASE. All modules and
scripts from the TURBOMOLE packages must be available in $PATH and the variable
$TURBODIR must be set. More information on how to install TURBOMOLE and to set
up the environment can be found in the manual or the tutorial at
the `web site`_.
.. _web site: http://www.turbomole-gmbh.com/turbomole-manuals.html
Using the calculator
====================
Python interface
----------------
The constructor method has only keyword arguments that can be specified in any
order. The list of accepted parameters with their types and default values is
provided in the section "Parameters" below.
The following example demonstrates how to construct a Turbomole calculator
object for a single-point energy calculation of a neutral singlet
system:
.. code:: python
from ase.calculators.turbomole import Turbomole
calc = Turbomole(multiplicity=1)
The selection of the method will be according to the default parameter values
(see below), i.e. in this case DFT with b-p functional and the def-SV(P) basis
set. After this the calculator can be associated with an existing Atoms object
.. code:: python
atoms.calc = calc
The recommended methods to access parameters and properties are the getter
methods, i.e. these ones starting with *get*. The calculations then are
triggered according to the principle of lazy evaluation, i.g.:
.. code:: python
energy = atoms.get_potential_energy()
print(energy)
Alternatively all calculations necessary to perform a task (see ``task``
parameter below) can be explicitly started with the ``calculate()`` method:
.. code:: python
calc.calculate(atoms)
The getter methods (see below) check for convergence and eventually return
``None`` or an exception if the calculation has not converged. If the
properties are read using the Turbomole object attributes then the convergence
must be checked with:
.. code:: python
assert calc.converged
If the user wishes to use the input files (such as the control file) generated
by module ``define`` before (or without) an actual calculation starts, the
``initialize()`` method has to be called explicitly after constructing the
calculator and associating it with an atoms object, e.g.:
.. code:: python
from ase.build import molecule
from ase.calculators.turbomole import Turbomole
mol = molecule('C60')
params = {
'use resolution of identity': True,
'total charge': -1,
'multiplicity': 2
}
calc = Turbomole(**params)
mol.calc = calc
calc.initialize()
Command-line interface
----------------------
The command-line interface has limited capability. For example the keyword
``task`` is not effective due to the specific way the methods are called by
``ase-run``. This example shows how to run a single-point DFT calculation of
water with the PBE functional and with geometry taken from the database::
ase-build H2O | ase-run turbomole --parameters="multiplicity=1,density functional=pbe"
Using the calculation output a second geometry optimization calculation with the
BFGS optimizer from ASE can be started using the ``restart`` keyword::
ase-build H2O | ase-run turbomole --parameters="restart=True" -f 0.02
Reading output
==============
Properties
----------
The implemented properties are described in the following table.
================== ======== ======================= =========== ==================
**Property** **Type** **Getter method** **Storage** **Task**
================== ======== ======================= =========== ==================
total energy float get_potential_energy(), e_total any task
get_property('energy')
forces np.array get_forces(), forces gradient
get_property('forces')
dipole moment np.array get_dipole_moment(), dipole any task
get_property('magmom')
charges np.array get_charges(),
get_property('charges') charges any task
<S\ :sup:`2`\ > float get_results results any task
normal modes list get_results results frequencies
mode frequencies list get_results results frequencies
gradient list get_results results gradient, optimize
hessian list get_results results frequencies
molecular orbitals list get_results results any task
occupancies list get_results results any task
================== ======== ======================= =========== ==================
Metadata
--------
Additionally, some useful information can be read with the calculator using the
functions ``read_version()``, ``read_datetime()``, ``read_runtime()``,
``read_hostname()``. Then the respective data can be retrieved using the
*version*, *datetime*, *runtime* and *hostname* attributes. Example:
.. code:: python
calc.read_runtime()
print(calc.runtime)
Restart mode
------------
The restart mode can be used either to start a calculation from the data left
from previous calculations or to analyze or post-process these data. The
previous run may have been performed without ASE but the working directory of
the job should contain the control file and all files referenced in it. In
addition, the standard output will be searched in files beginning with *job.*
and ending with *.out* but this is optional input, mainly to extract job
datetime, runtimes, hostname and TURBOMOLE version. After constructing the
calculator object (where *params* dictionary is optional):
.. code:: python
calc = Turbomole(restart=True, **params)
the data left from the previous calculations can be queried, for example:
.. code:: python
from ase.visualize import view
view(calc.atoms)
print(calc.converged)
print(calc.get_potential_energy())
A previous calculation may have crashed or not converged. Also in these cases
all data that is available will be retrieved but the ``calc.converged`` will
be set to ``False``. The calculation can be continued without any parameter
modifications (for example if it has exceeded the job maximum run time and was
interrupted) or with better convergence parameters specified in ``params``
dictionary. Finally, another calculation task can be started beginning
from the data left from a converged previous one, specifying a new ``task``
parameter:
.. code:: python
calc = Turbomole(restart=True, task='gradient', **params)
Caveat about using the restart mode
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When restart mode is set, the calculator reads and parses all relevant data
groups from the *control* file. The format of the `control` file, especially
of some data groups, does not allow to guarantee that the parsing is always
successful and correct. The parsing process may fail and raise an exception
or the parameters read might be wrong. If you encounter errors due to restart
mode please file an issue.
Policies for files in the working directory
-------------------------------------------
* When the calculator is constructed in restart mode (i.e. ``restart=True``)
and with no other parameters, then no files will be created, deleted or
modified in the working directory.
* When the calculator is created in normal (i.e. ``restart=False``) mode then
all TURBOMOLE related files found in the working directory will be deleted.
* When the calculator is created with ``restart=True`` and other parameters,
the *control* file might be modified. In particular, if ``define_str``,
``control_input`` or ``control_kdg`` are specified or ``initialize()``
is called then the *control* file will be modified.
* When ``calculate()``, ``get_potential_energy()``, ``get_forces()`` etc. are
called in restart mode, the *control* file will be modified if the previous
calculation has not converged.
* When an *atoms* object is associated with the calculator or any calculator
method is called with an *atoms* object specified, then the calculator will
be reset and all TURBOMOLE related files found in the working directory will
be deleted if *atoms* is different (tol=1e-2) from the internal *atoms* object or
if internal coordinates are used and the internal and the supplied *atoms*
positions are different (tol=1e-13). The *coord* file will be changed only
if the *atoms* positions are different (tol=1e-13).
Parameters
==========
The following table provides a summary of all parameters and their default
values.
================================ ======== =========== ============= ==============
**Name** **Type** **Default** **Units** **Updateable**
================================ ======== =========== ============= ==============
restart bool False None True
define_str str None None True
control_kdg list None None True
control_input list None None True
reset_tolerance float 1e-2 Angstrom True
automatic orbital shift float 0.1 eV True
basis set name str def-SV(P) None False
closed-shell orbital shift float None eV True
damping adjustment step float None None True
density convergence float None None True
density functional str b-p None True
energy convergence float None eV True
esp fit str None None True
fermi annealing factor float 0.95 None True
fermi final temperature float 300 Kelvin True
fermi homo-lumo gap criterion float 0.1 eV True
fermi initial temperature float 300 Kelvin True
fermi stopping criterion float 0.001 eV True
force convergence float None eV/Angstrom True
geometry optimization iterations int None None True
grid size str m3 None True
ground state bool True None False
initial damping float None None True
initial guess None eht None False
minimal damping float None None True
multiplicity int None None False
non-automatic orbital shift bool False None True
numerical hessian dict None None True
point group str c1 None False
ri memory int 1000 Megabyte True
scf energy convergence float None eV True
scf iterations int 60 None True
task str energy None True
title str '' None False
total charge int 0 None False
transition vector int None None True
uhf bool None None False
use basis set library bool True None False
use dft bool True None False
use fermi smearing bool False None True
use redundant internals bool False None False
use resolution of identity bool False None False
================================ ======== =========== ============= ==============
The attribute ``Updateable`` specifies whether it is possible to change a
parameter upon restart. The ``restart`` keyword tells the calculator whether to
restart from a previous calculation. The optional ``define_str`` is a string of
characters that would be entered in an interactive session with module ``define``,
i.e. this is the stdin for running module ``define``. The ``control_kdg`` is an
optional list of data groups in control file to be deleted after running module
``define`` and ``control_input`` is an optional list of data groups to be added
to control file after running module ``define``.
If the Atoms object is updated via ``set_atoms()`` method, a check for the changes
is performed and if the changes in positions are larger than a tolerance
``reset_tolerance`` then the calculator is reset, the working directory is purged
and module ``define`` is called. In order to control this behavior the user may
choose a custom value for ``reset_tolerance``.
The parameter ``initial guess`` can be either the strings *eht* (extended
Hückel theory) or *hcore* (one-electron core Hamiltonian) or a dictionary
*{'use': '<path/to/control>'}* specifying a path to a control file with the
molecular orbitals that should be used as initial guess.
If ``numerical hessian`` is defined then the force constant matrix will be
computed numerically using the script NumForce. The keys can be *'central'*
indicating use of central differences (type *bool*) and *'delta'* specifying
the coordinate displacements in Angstrom (type *float*).
While ``task`` can be set to ``"optimize"`` to perform a geometry optimization
using Turbomole's own relaxation algorithms, doing so directly is discouraged.
Instead, the calculator's ``get_optimizer()`` method should be called to obtain
a ``TurbomoleOptimizer`` which can be used like any other ASE
:mod:`Optimizer <ase.optimize>`. An :ref:`example <turbomole_optimizer_example>`
is given below.
Some parameter names contain spaces. This means that the preferred way to pass
the parameters is to construct a dictionary, for example:
.. code:: python
params = {'use resolution of identity': True,
'ri memory': 2000,
'scf iterations': 80,
'force convergence': 0.05}
calc = Turbomole(**params)
Using the ``todict()`` method, the parameters of an existing Turbomole calculator
object can be stored in a flat dictionary and then re-used to create a
new Turbomole calculator object:
.. code:: python
params = calc.todict()
new_calc = Turbomole(**params)
This is especially useful if the *calc* object has been created in restart
mode or retrieved from a database.
Examples
========
Single-point energy calculation
-------------------------------
This script calculates the total energy of H2:
:git:`ase/test/calculator/turbomole/test_turbomole_H2.py`.
Nudged elastic band calculation
-------------------------------
The example demonstrates a proton transfer barrier calculation in H3O2-:
:git:`ase/test/calculator/turbomole/test_turbomole_h3o2m.py`.
Single-point gradient calculation of Au13-
------------------------------------------
This script demonstrates the use of the restart option.
:git:`ase/test/calculator/turbomole/test_turbomole_au13.py`.
.. _turbomole_optimizer_example:
Geometry optimization using TurbomoleOptimizer (recommended)
------------------------------------------------------------
:git:`ase/test/calculator/turbomole/test_turbomole_optimizer.py`.
Geometry optimization and normal mode analysis for H2O
------------------------------------------------------
:git:`ase/test/calculator/turbomole/test_turbomole_h2o.py`.
.. _turbomole qmmm:
QMMM simulation
---------------
The following example demonstrates how to use the Turbomole calculator in simple
and explicit QMMM simulations on the examples of a water dimer partitioned into
an MM and a QM region.
:git:`ase/test/calculator/turbomole/test_turbomole_qmmm.py`.
The MM region is treated within a TIP3P model in the MM calculator and as an
array of point charges in the QM calculation. The interaction between the QM
and MM regions, used in the explicit QMMM calculator, is of Lennard-Jones type.
The point charge embedding functionality of the Turbomole calculator can also be
used without QMMM calculators if the ``embed()`` method is called with a
specification of the point charges and their positions in which to embed the
QM system:
.. code:: python
from ase.collections import s22
from ase.calculators.turbomole import Turbomole
params = {'esp fit': 'kollman', 'multiplicity': 1}
dimer = s22['Water_dimer']
qm_mol = dimer[0:3]
calc = Turbomole(**params)
qm_mol.calc = calc
calc.embed(
charges=[-0.76, 0.38, 0.38],
positions=dimer.positions[3:6]
)
print(qm_mol.get_potential_energy())
print(qm_mol.get_forces())
print(qm_mol.get_charges())
A more elaborated version of the latter example is used in the test script:
:git:`ase/test/calculator/turbomole/test_turbomole_2h2o.py`.
Deprecated, non-implemented and unsupported features
====================================================
Deprecated but still accepted parameters
----------------------------------------
==================== ======== ======================== =========================
Name Type Default value Description
==================== ======== ======================== =========================
``calculate_energy`` ``str`` ``dscf`` module name for energy
calculation
``calculate_forces`` ``str`` ``grad`` module name for forces
calculation
``post_HF`` ``bool`` ``False`` post Hartree-Fock format
for energy reader
==================== ======== ======================== =========================
Not implemented parameters
--------------------------
The following table includes parameters that are planned but not implemented yet.
================================ ======= ========== =============== ==========
Name Type Default Units Updateable
================================ ======= ========== =============== ==========
basis set definition dict None None False
excited state bool False None False
label str None None False
number of excited states int None None False
optimized excited state int None None False
rohf bool None None False
================================ ======= ========== =============== ==========
Unsupported methods and features
--------------------------------
The following methods and features are supported in TURBOMOLE but currently not
in the ASE Turbomole calculator:
* MP2 and coupled-cluster methods (modules mpgrad, rimp2, ricc2)
* Excited state calculations (modules escf, egrad)
* Molecular dynamics (modules mdprep, uff)
* Solvent effects (COSMO model)
* Global optimization (module haga)
* Property modules (modules freeh, moloch)
* Point groups other than C1 (see not implemented parameters)
* Restricted open-shell Hartree-Fock (see not implemented parameters)
* Per-element and per-atom basis set specifications (see not implemented parameters)
* Explicit basis set specification (see not implemented parameters)
|