1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
.. module:: ase.spacegroup
===============================
Using the spacegroup subpackage
===============================
The most evident usage of the spacegroup subpackage is to set up an
initial unit of a bulk structure. For this you only need to supply the
unique atoms and their scaled positions, space group and lattice
parameters.
Examples of setting up bulk structures
======================================
We start by showing some examples of how to set up some common or
interesting bulk structures using
:func:`ase.spacegroup.crystal`. This function takes a lot of
arguments:
.. autofunction:: crystal
There is also a :func:`get_spacegroup` function that will return a spacegroup object from an
Atoms object.
Aluminium (fcc)
---------------
.. image:: spacegroup-al.png
.. literalinclude:: spacegroup-al.py
The *spacegroup* argument can also be entered with its Hermann-Mauguin
symbol, e.g. *spacegroup=225* is equivalent to *spacegroup='F m -3 m'*.
Iron (bcc)
----------
.. image:: spacegroup-fe.png
.. literalinclude:: spacegroup-fe.py
Magnesium (hcp)
---------------
.. image:: spacegroup-mg.png
.. literalinclude:: spacegroup-mg.py
Diamond
-------
.. image:: spacegroup-diamond.png
.. literalinclude:: spacegroup-diamond.py
.. _nacl:
Sodium chloride
---------------
.. image:: spacegroup-nacl.png
.. literalinclude:: spacegroup-nacl.py
Rutile
------
.. image:: spacegroup-rutile.png
.. literalinclude:: spacegroup-rutile.py
CoSb3 skutterudite
------------------
.. image:: spacegroup-skutterudite.png
Skutterudites_ are quite interesting structures with 32 atoms
in the unit cell.
.. _Skutterudites: https://en.wikipedia.org/wiki/Skutterudite
.. literalinclude:: spacegroup-skutterudite.py
Often this structure is visualised with the Cobalt atoms on the
corners. This can easily be accomplished with ASE using
:func:`ase.build.cut`. Below is the *origo* argument used to
put the Cobalt atom on the corners and *extend* to include all corner
and edge atoms, even those belonging to neighbouring unit cells.
.. image:: spacegroup-cosb3.png
.. literalinclude:: spacegroup-cosb3.py
The Spacegroup class
====================
The :class:`ase.spacegroup.Spacegroup` class is used
internally by the :func:`ase.spacegroup.crystal` function, but
might sometimes also be useful if you want to know e.g. the symmetry
operations of a given space group. Instances of the
:class:`ase.spacegroup.Spacegroup` class are immutable
objects holding space group information, such as symmetry operations.
Let us e.g. consider the fcc structure. To print information about the
space group, do
>>> from ase.spacegroup import Spacegroup
>>> sg = Spacegroup(225)
>>> print(sg)
225 F m -3 m
setting 1
centrosymmetric 1
primitive vectors
0.0000000000 0.5000000000 0.5000000000
0.5000000000 0.0000000000 0.5000000000
0.5000000000 0.5000000000 0.0000000000
reciprocal vectors
-1 1 1
1 -1 1
1 1 -1
4 subtranslations
0.0000000000 0.0000000000 0.0000000000
0.0000000000 0.5000000000 0.5000000000
0.5000000000 0.0000000000 0.5000000000
0.5000000000 0.5000000000 0.0000000000
24 symmetry operations (rot+trans)
1 0 0 0 1 0 0 0 1 0.0000000000 0.0000000000 0.0000000000
-1 0 0 0 -1 0 0 0 1 0.0000000000 0.0000000000 0.0000000000
-1 0 0 0 1 0 0 0 -1 0.0000000000 0.0000000000 0.0000000000
1 0 0 0 -1 0 0 0 -1 0.0000000000 0.0000000000 0.0000000000
0 0 1 1 0 0 0 1 0 0.0000000000 0.0000000000 0.0000000000
0 0 1 -1 0 0 0 -1 0 0.0000000000 0.0000000000 0.0000000000
0 0 -1 -1 0 0 0 1 0 0.0000000000 0.0000000000 0.0000000000
0 0 -1 1 0 0 0 -1 0 0.0000000000 0.0000000000 0.0000000000
0 1 0 0 0 1 1 0 0 0.0000000000 0.0000000000 0.0000000000
0 -1 0 0 0 1 -1 0 0 0.0000000000 0.0000000000 0.0000000000
0 1 0 0 0 -1 -1 0 0 0.0000000000 0.0000000000 0.0000000000
0 -1 0 0 0 -1 1 0 0 0.0000000000 0.0000000000 0.0000000000
0 1 0 1 0 0 0 0 -1 0.0000000000 0.0000000000 0.0000000000
0 -1 0 -1 0 0 0 0 -1 0.0000000000 0.0000000000 0.0000000000
0 1 0 -1 0 0 0 0 1 0.0000000000 0.0000000000 0.0000000000
0 -1 0 1 0 0 0 0 1 0.0000000000 0.0000000000 0.0000000000
1 0 0 0 0 1 0 -1 0 0.0000000000 0.0000000000 0.0000000000
-1 0 0 0 0 1 0 1 0 0.0000000000 0.0000000000 0.0000000000
-1 0 0 0 0 -1 0 -1 0 0.0000000000 0.0000000000 0.0000000000
1 0 0 0 0 -1 0 1 0 0.0000000000 0.0000000000 0.0000000000
0 0 1 0 1 0 -1 0 0 0.0000000000 0.0000000000 0.0000000000
0 0 1 0 -1 0 1 0 0 0.0000000000 0.0000000000 0.0000000000
0 0 -1 0 1 0 1 0 0 0.0000000000 0.0000000000 0.0000000000
0 0 -1 0 -1 0 -1 0 0 0.0000000000 0.0000000000 0.0000000000
<BLANKLINE>
<BLANKLINE>
Or, if you want to figure out what sites in the unit cell are
equivalent to (0, 0, 0.5), simply do
>>> sites,kinds = sg.equivalent_sites([(0, 0, 0.5)])
>>> sites
array([[ 0. , 0. , 0.5],
[ 0.5, 0. , 0. ],
[ 0. , 0.5, 0. ],
[ 0.5, 0.5, 0.5]])
>>> kinds
[0, 0, 0, 0]
where *sites* will be an array containing the scaled positions of the
four symmetry-equivalent sites.
.. autoclass:: Spacegroup
.. autofunction:: get_spacegroup
Getting a reduced atomic basis
===============================
You can also get a basis representation of a given crystal within a particular spagegroup,
using the :func:`ase.spacegroup.get_basis` function.
As an example, let's look at rocksalt NaCl, and see how we can reproduce the basis from an :class:`ase.Atoms` object:
>>> from ase.build import bulk
>>> from ase.spacegroup import get_basis
>>> atoms = bulk('NaCl', crystalstructure='rocksalt', a=5.64)
>>> spacegroup = 225 # Rocksalt
>>> basis = get_basis(atoms, spacegroup=spacegroup)
>>> basis
[[0. 0. 0. ]
[0.5 0.5 0.5]]
which gives us our expected 2 basis vectors for rocksalt, from the :ref:`previous example<nacl>`.
.. _spglib: https://spglib.github.io/spglib/
.. note::
Inferring the spacegroup requires the installation of `spglib`_, otherwise the space group must be passed explicitly.
.. autofunction:: get_basis
|