File: README.md

package info (click to toggle)
python-assertpy 1.1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 628 kB
  • sloc: python: 5,712; makefile: 4; sh: 3
file content (1061 lines) | stat: -rw-r--r-- 37,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# assertpy

Simple assertions library for unit testing in Python with a nice fluent API.  Supports both Python 2 and 3.

[![Build Status](https://travis-ci.org/assertpy/assertpy.svg?branch=master)](https://travis-ci.org/assertpy/assertpy)
[![Coverage Status](https://coveralls.io/repos/github/assertpy/assertpy/badge.svg?branch=master)](https://coveralls.io/github/assertpy/assertpy?branch=master)


## Usage

Just import the `assert_that` function, and away you go...

```py
from assertpy import assert_that

def test_something():
    assert_that(1 + 2).is_equal_to(3)
    assert_that('foobar').is_length(6).starts_with('foo').ends_with('bar')
    assert_that(['a', 'b', 'c']).contains('a').does_not_contain('x')
```

Of course, `assertpy` works best with a python test runner like [pytest](http://pytest.org/) (our favorite) or [Nose](http://nose.readthedocs.org/).


## Installation

### Install via pip
[![PyPI Badge](https://badge.fury.io/py/assertpy.svg)](https://pypi.org/project/assertpy/)

The `assertpy` library is available via [PyPI](https://pypi.org/project/assertpy/).
Just install with:

```
pip install assertpy
```

### Install via conda

[![Conda Version](https://img.shields.io/conda/vn/conda-forge/assertpy.svg)](https://anaconda.org/conda-forge/assertpy)
[![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/assertpy.svg)](https://anaconda.org/conda-forge/assertpy)

Or, if you are a big fan of [conda](https://conda.io/) like we are, there is an [assertpy-feedstock](https://github.com/conda-forge/assertpy-feedstock) for [Conda-Forge](https://conda-forge.org/) that you can use:

```
conda install assertpy --channel conda-forge
```


## Docs

The fluent API of `assertpy` is designed to create compact, yet readable tests.
The API has been modeled after other fluent testing APIs, especially the awesome
[AssertJ](http://joel-costigliola.github.io/assertj/) assertion library for Java.  Of course, in the `assertpy` library everything is fully pythonic and designed to take full advantage of the dynamism in the Python runtime.

All assertions, with usage examples, are documented here:  
https://assertpy.github.io/docs.html

And there are hundreds of examples below.  Read on...

### Strings

Matching strings:

```py
assert_that('').is_not_none()
assert_that('').is_empty()
assert_that('').is_false()
assert_that('').is_type_of(str)
assert_that('').is_instance_of(str)

assert_that('foo').is_length(3)
assert_that('foo').is_not_empty()
assert_that('foo').is_true()
assert_that('foo').is_alpha()
assert_that('123').is_digit()
assert_that('foo').is_lower()
assert_that('FOO').is_upper()
assert_that('foo').is_iterable()
assert_that('foo').is_equal_to('foo')
assert_that('foo').is_not_equal_to('bar')
assert_that('foo').is_equal_to_ignoring_case('FOO')

assert_that(u'foo').is_unicode()  # on python 2
assert_that('foo').is_unicode()   # on python 3

assert_that('foo').contains('f')
assert_that('foo').contains('f','oo')
assert_that('foo').contains_ignoring_case('F','oO')
assert_that('foo').does_not_contain('x')
assert_that('foo').contains_only('f','o')
assert_that('foo').contains_sequence('o','o')

assert_that('foo').contains_duplicates()
assert_that('fox').does_not_contain_duplicates()

assert_that('foo').is_in('foo','bar','baz')
assert_that('foo').is_not_in('boo','bar','baz')
assert_that('foo').is_subset_of('abcdefghijklmnopqrstuvwxyz')

assert_that('foo').starts_with('f')
assert_that('foo').ends_with('oo')

assert_that('foo').matches(r'\w')
assert_that('123-456-7890').matches(r'\d{3}-\d{3}-\d{4}')
assert_that('foo').does_not_match(r'\d+')
```

Regular expressions can be tricky.  Be sure to use raw strings (prefix the pattern string with `r`) for the regex pattern to be matched.  Also, note that the `matches()` function passes for partial matches (as does the [re.match](https://docs.python.org/3/library/re.html#re.match) function that underlies it). If you want to match the entire string, just include anchors in the regex pattern.

```py
# partial matches, these all pass
assert_that('foo').matches(r'\w')
assert_that('foo').matches(r'oo')
assert_that('foo').matches(r'\w{2}')

# match the entire string with an anchored regex pattern, passes
assert_that('foo').matches(r'^\w{3}$')

# fails
assert_that('foo').matches(r'^\w{2}$')
```

Additionally, while `assertpy` `matches()` assertion does not have support for [re.match](https://docs.python.org/3/library/re.html#re.match) flags such as `re.MULTILINE` or `re.DOTALL`, it works as expected with _inline flags_ in the pattern.

```py
s = """bar
foo
baz"""

# use multiline inline flag (?m)
assert_that(s).matches(r'(?m)^foo$')

# use dotall inline flag (?s)
assert_that(s).matches(r'(?s)b(.*)z')
```

### Numbers

Matching integers:

```py
assert_that(0).is_not_none()
assert_that(0).is_false()
assert_that(0).is_type_of(int)
assert_that(0).is_instance_of(int)

assert_that(0).is_zero()
assert_that(1).is_not_zero()
assert_that(1).is_positive()
assert_that(-1).is_negative()

assert_that(123).is_equal_to(123)
assert_that(123).is_not_equal_to(456)

assert_that(123).is_greater_than(100)
assert_that(123).is_greater_than_or_equal_to(123)
assert_that(123).is_less_than(200)
assert_that(123).is_less_than_or_equal_to(200)
assert_that(123).is_between(100, 200)
assert_that(123).is_close_to(100, 25)

assert_that(1).is_in(0,1,2,3)
assert_that(1).is_not_in(-1,-2,-3)
```

Matching floats:

```py
assert_that(0.0).is_not_none()
assert_that(0.0).is_false()
assert_that(0.0).is_type_of(float)
assert_that(0.0).is_instance_of(float)

assert_that(123.4).is_equal_to(123.4)
assert_that(123.4).is_not_equal_to(456.7)

assert_that(123.4).is_greater_than(100.1)
assert_that(123.4).is_greater_than_or_equal_to(123.4)
assert_that(123.4).is_less_than(200.2)
assert_that(123.4).is_less_than_or_equal_to(123.4)
assert_that(123.4).is_between(100.1, 200.2)
assert_that(123.4).is_close_to(123, 0.5)

assert_that(float('NaN')).is_nan()
assert_that(123.4).is_not_nan()
assert_that(float('Inf')).is_inf()
assert_that(123.4).is_not_inf()
```

Of course, using `is_equal_to()` with a `float` value is just asking for trouble. You'll always want to use the assertions methods like `is_close_to()` and `is_between()`.


### Lists

Matching lists:

```py
assert_that([]).is_not_none()
assert_that([]).is_empty()
assert_that([]).is_false()
assert_that([]).is_type_of(list)
assert_that([]).is_instance_of(list)
assert_that([]).is_iterable()

assert_that(['a','b']).is_length(2)
assert_that(['a','b']).is_not_empty()
assert_that(['a','b']).is_equal_to(['a','b'])
assert_that(['a','b']).is_not_equal_to(['b','a'])

assert_that(['a','b']).contains('a')
assert_that(['a','b']).contains('b','a')
assert_that(['a','b']).does_not_contain('x','y')
assert_that(['a','b']).contains_only('a','b')
assert_that(['a','a']).contains_only('a')
assert_that(['a','b','c']).contains_sequence('b','c')
assert_that(['a','b']).is_subset_of(['a','b','c'])
assert_that(['a','b','c']).is_sorted()
assert_that(['c','b','a']).is_sorted(reverse=True)

assert_that(['a','x','x']).contains_duplicates()
assert_that(['a','b','c']).does_not_contain_duplicates()

assert_that(['a','b','c']).starts_with('a')
assert_that(['a','b','c']).ends_with('c')
```

#### List Flattening

Lists of lists can be flattened on any item (by index) using the `extracting` helper (see [dict flattening](#dict-flattening)):

```py
people = [['Fred', 'Smith'], ['Bob', 'Barr']]
assert_that(people).extracting(0).is_equal_to(['Fred','Bob'])
assert_that(people).extracting(-1).is_equal_to(['Smith','Barr'])
```

### Tuples

Matching tuples:

```py
assert_that(()).is_not_none()
assert_that(()).is_empty()
assert_that(()).is_false()
assert_that(()).is_type_of(tuple)
assert_that(()).is_instance_of(tuple)
assert_that(()).is_iterable()

assert_that((1,2,3)).is_length(3)
assert_that((1,2,3)).is_not_empty()
assert_that((1,2,3)).is_equal_to((1,2,3))
assert_that((1,2,3)).is_not_equal_to((1,2,4))

assert_that((1,2,3)).contains(1)
assert_that((1,2,3)).contains(3,2,1)
assert_that((1,2,3)).does_not_contain(4,5,6)
assert_that((1,2,3)).contains_only(1,2,3)
assert_that((1,1,1)).contains_only(1)
assert_that((1,2,3)).contains_sequence(2,3)
assert_that((1,2,3)).is_subset_of((1,2,3,4))
assert_that((1,2,3)).is_sorted()
assert_that((3,2,1)).is_sorted(reverse=True)

assert_that((1,2,2)).contains_duplicates()
assert_that((1,2,3)).does_not_contain_duplicates()

assert_that((1,2,3)).starts_with(1)
assert_that((1,2,3)).ends_with(3)
```

#### Tuple Flattening

Tuples of tuples can be flattened on any item (by index) using the `extracting` helper (see [dict flattening](#dict-flattening)):

```py
points = ((1,2,3),(4,5,6))
assert_that(points).extracting(0).is_equal_to([1, 4])
assert_that(points).extracting(-1).is_equal_to([3, 6])
```

### Dicts

Matching dicts:

```py
assert_that({}).is_not_none()
assert_that({}).is_empty()
assert_that({}).is_false()
assert_that({}).is_type_of(dict)
assert_that({}).is_instance_of(dict)

assert_that({'a':1,'b':2}).is_length(2)
assert_that({'a':1,'b':2}).is_not_empty()
assert_that({'a':1,'b':2}).is_equal_to({'a':1,'b':2})
assert_that({'a':1,'b':2}).is_equal_to({'b':2,'a':1})
assert_that({'a':1,'b':2}).is_not_equal_to({'a':1,'b':3})

assert_that({'a':1,'b':2}).contains('a')
assert_that({'a':1,'b':2}).contains('b','a')
assert_that({'a':1,'b':2}).does_not_contain('x')
assert_that({'a':1,'b':2}).does_not_contain('x','y')
assert_that({'a':1,'b':2}).contains_only('a','b')
assert_that({'a':1,'b':2}).is_subset_of({'a':1,'b':2,'c':3})

# contains_key() is just an alias for contains()
assert_that({'a':1,'b':2}).contains_key('a')
assert_that({'a':1,'b':2}).contains_key('b','a')

# does_not_contain_key() is just an alias for does_not_contain()
assert_that({'a':1,'b':2}).does_not_contain_key('x')
assert_that({'a':1,'b':2}).does_not_contain_key('x','y')

assert_that({'a':1,'b':2}).contains_value(1)
assert_that({'a':1,'b':2}).contains_value(2,1)
assert_that({'a':1,'b':2}).does_not_contain_value(3)
assert_that({'a':1,'b':2}).does_not_contain_value(3,4)

assert_that({'a':1,'b':2}).contains_entry({'a':1})
assert_that({'a':1,'b':2}).contains_entry({'a':1},{'b':2})
assert_that({'a':1,'b':2}).does_not_contain_entry({'a':2})
assert_that({'a':1,'b':2}).does_not_contain_entry({'a':2},{'b':1})
```

#### Dict Comparison

Dict keys can optionally be ignored or included when using the `is_equal_to()` assertion.

Ignore dict keys with the `ignore` keyword argument:

```py
# ignore a single key
assert_that({'a':1,'b':2}).is_equal_to({'a':1}, ignore='b')

# ignore multiple keys using a list
assert_that({'a':1,'b':2,'c':3}).is_equal_to({'a':1}, ignore=['b','c'])

# ignore nested keys using a tuple
assert_that({'a':1,'b':{'c':2,'d':3}}).is_equal_to({'a':1,'b':{'c':2}}, ignore=('b','d'))
```

Or include dict keys with the `include` keyword argument:

```py
# include a single key
assert_that({'a':1,'b':2}).is_equal_to({'a':1}, include='a')

# include multiple keys using a list
assert_that({'a':1,'b':2,'c':3}).is_equal_to({'a':1,'b':2}, include=['a','b'])

# include nested keys using a tuple
assert_that({'a':1,'b':{'c':2,'d':3}}).is_equal_to({'b':{'d':3}}, include=('b','d'))
```

Or do both:

```py
assert_that({'a':1,'b':{'c':2,'d':3,'e':4,'f':5}}).is_equal_to(
    {'b':{'d':3,'f':5}},
    ignore=[('b','c'),('b','e')],
    include='b'
)
```

#### Dict Flattening

Lists of dicts can be flattened on key using the `extracting` helper (see [extracting attributes](#extracting-attributes-from-objects)):

```py
fred = {'first_name': 'Fred', 'last_name': 'Smith'}
bob = {'first_name': 'Bob', 'last_name': 'Barr'}
people = [fred, bob]

assert_that(people).extracting('first_name').is_equal_to(['Fred','Bob'])
assert_that(people).extracting('first_name').contains('Fred','Bob')
```

#### Dict Key Assertions

Fluent assertions against the value of a given key can be done by prepending `has_` to the key name (see [dynamic assertions](#dynamic-assertions-on-objects)):

```py
fred = {'first_name': 'Fred', 'last_name': 'Smith', 'shoe_size': 12}

assert_that(fred).has_first_name('Fred')
assert_that(fred).has_last_name('Smith')
assert_that(fred).has_shoe_size(12)
```


### Sets

Matching sets:

```py
assert_that(set([])).is_not_none()
assert_that(set([])).is_empty()
assert_that(set([])).is_false()
assert_that(set([])).is_type_of(set)
assert_that(set([])).is_instance_of(set)

assert_that(set(['a','b'])).is_length(2)
assert_that(set(['a','b'])).is_not_empty()
assert_that(set(['a','b'])).is_equal_to(set(['a','b']))
assert_that(set(['a','b'])).is_equal_to(set(['b','a']))
assert_that(set(['a','b'])).is_not_equal_to(set(['a','x']))

assert_that(set(['a','b'])).contains('a')
assert_that(set(['a','b'])).contains('b','a')
assert_that(set(['a','b'])).does_not_contain('x','y')
assert_that(set(['a','b'])).contains_only('a','b')
assert_that(set(['a','b'])).is_subset_of(set(['a','b','c']))
assert_that(set(['a','b'])).is_subset_of(set(['a']), set(['b']))
```


### Booleans

Matching booleans:

```py
assert_that(True).is_true()
assert_that(False).is_false()
assert_that(True).is_type_of(bool)
```


### None

Matching `None`:

```py
assert_that(None).is_none()
assert_that('').is_not_none()
assert_that(None).is_type_of(type(None))
```


### Dates

Matching dates:

```py
import datetime

today = datetime.datetime.today()
yesterday = today - datetime.timedelta(days=1)

assert_that(yesterday).is_before(today)
assert_that(today).is_after(yesterday)
```

You can also make assertions about date equality (ignoring various units of time) like this:

```py
today_0us = today - datetime.timedelta(microseconds=today.microsecond)
today_0s = today - datetime.timedelta(seconds=today.second)
today_0h = today - datetime.timedelta(hours=today.hour)

assert_that(today).is_equal_to_ignoring_milliseconds(today_0us)
assert_that(today).is_equal_to_ignoring_seconds(today_0s)
assert_that(today).is_equal_to_ignoring_time(today_0h)
assert_that(today).is_equal_to(today)
```

You can use these numeric assertions on dates:

```py
middle = today - datetime.timedelta(hours=12)
hours_24 = datetime.timedelta(hours=24)

assert_that(today).is_greater_than(yesterday)
assert_that(yesterday).is_less_than(today)
assert_that(middle).is_between(yesterday, today)

#note that the tolerance must be a datetime.timedelta object
assert_that(yesterday).is_close_to(today, hours_24)
```

Lastly, because datetime is an object we can easily test the properties of a given date by prepending `has_` to the property name (see [dynamic assertions](#dynamic-assertions-on-objects)):

```py
# 1980-01-02 03:04:05.000006
x = datetime.datetime(1980, 1, 2, 3, 4, 5, 6)

assert_that(x).has_year(1980)
assert_that(x).has_month(1)
assert_that(x).has_day(2)
assert_that(x).has_hour(3)
assert_that(x).has_minute(4)
assert_that(x).has_second(5)
assert_that(x).has_microsecond(6)
```

Currently, `assertpy` only supports dates via the `datetime` type.


### Files

Matching files:

```py
assert_that('foo.txt').exists()
assert_that('missing.txt').does_not_exist()
assert_that('foo.txt').is_file()

assert_that('mydir').exists()
assert_that('missing_dir').does_not_exist()
assert_that('mydir').is_directory()

assert_that('foo.txt').is_named('foo.txt')
assert_that('foo.txt').is_child_of('mydir')
```

Matching file contents is done using the `contents_of()` helper to read the file into a string with the given encoding (if no encoding is given it defaults to `utf-8`).  Once the file is read into a string, you can make quick work of it using the `assertpy` string assertions like this:

```py
from assertpy import assert_that, contents_of

contents = contents_of('foo.txt', 'ascii')
assert_that(contents).starts_with('foo').ends_with('bar').contains('oob')
```


### Objects

Matching an object:

```py
fred = Person('Fred','Smith')

assert_that(fred).is_not_none()
assert_that(fred).is_true()
assert_that(fred).is_type_of(Person)
assert_that(fred).is_instance_of(object)
assert_that(fred).is_same_as(fred)
```

Matching an attribute, a property, and a method:

```py
assert_that(fred.first_name).is_equal_to('Fred')
assert_that(fred.name).is_equal_to('Fred Smith')
assert_that(fred.say_hello()).is_equal_to('Hello, Fred!')
```

Given `fred` is an instance of the following `Person` class:

```py
class Person(object):
    def __init__(self, first_name, last_name):
        self.first_name = first_name
        self.last_name = last_name

    @property
    def name(self):
        return '%s %s' % (self.first_name, self.last_name)

    def say_hello(self):
        return 'Hello, %s!' % self.first_name
```


#### Extracting Attributes from Objects

It is frequently necessary to test collections of objects.  The `assertpy` library includes an `extracting` helper to flatten the collection on a given attribute, like this:

```py
fred = Person('Fred','Smith')
bob = Person('Bob','Barr')
people = [fred, bob]

assert_that(people).extracting('first_name').is_equal_to(['Fred','Bob'])
assert_that(people).extracting('first_name').contains('Fred','Bob')
assert_that(people).extracting('first_name').does_not_contain('Charlie')
```

Of course `extracting` works with subclasses too...suppose we create a simple class hierarchy by creating a `Developer` subclass of `Person`, like this:

```py
class Developer(Person):
    def say_hello(self):
        return '%s writes code.' % self.first_name
```

Testing a mixed collection of parent and child objects works as expected:

```py
fred = Person('Fred','Smith')
joe = Developer('Joe','Coder')
people = [fred, joe]

assert_that(people).extracting('first_name').contains('Fred','Joe')
```

Additionally, the `extracting` helper can accept a list of attributes to be extracted, and will flatten them into a list of tuples:

```py
assert_that(people).extracting('first_name', 'last_name').contains(('Fred','Smith'), ('Joe','Coder'))
```

Lastly, `extracting` works on not just class attributes, but also properties, and even zero-argument methods:

```py
assert_that(people).extracting('name').contains('Fred Smith', 'Joe Coder')
assert_that(people).extracting('say_hello').contains('Hello, Fred!', 'Joe writes code.')
```

As noted above, the `extracting` helper also works on a collection of dicts:

```py
fred = {'first_name': 'Fred', 'last_name': 'Smith'}
bob = {'first_name': 'Bob', 'last_name': 'Barr'}
people = [fred, bob]

assert_that(people).extracting('first_name').contains('Fred','Bob')
```

##### Extracting and Filtering

The `extracting` helper can include a `filter` to keep only those items for which the given `filter` is truthy.  For example, suppose we have the following list of dicts we wish to test:

```py
users = [
    {'user': 'Fred', 'age': 36, 'active': True},
    {'user': 'Bob', 'age': 40, 'active': False},
    {'user': 'Johnny', 'age': 13, 'active': True}
]
```

The `filter` can be the name of a key (or attribute, or property, or zero-argument method) and the extracted items are kept if the corresponding value is truthy:

```py
assert_that(users).extracting('user', filter='active')\
    .is_equal_to(['Fred','Johnny'])
```

The `filter` can be a `dict`-like object and the extracted items are kept if *all* corresponding key-value pairs are equal:

```py
assert_that(users).extracting('user', filter={'active': False})\
    .is_equal_to(['Bob'])
assert_that(users).extracting('user', filter={'age': 36, 'active': True})\
    .is_equal_to(['Fred'])
```

The `filter` can be any function (including an in-line `lambda`) that accepts as its single argument each item in the collection and the extracted items are kept if the function evaluates to `True`:

```py
assert_that(users).extracting('user', filter=lambda x: x['age'] > 20)\
    .is_equal_to(['Fred', 'Bob'])
```

##### Extracting and Sorting

The `extracting` helper can include a `sort` to enforce order on the extracted items.

The `sort` can be the name of a key (or attribute, or property, or zero-argument method) and the extracted items are ordered by the corresponding values:

```py
assert_that(users).extracting('user', sort='age').is_equal_to(['Johnny','Fred','Bob'])
```

The `sort` can be an `iterable` of names and the extracted items are ordered by corresponding value of the first name, ties are broken by the corresponding values of the second name, and so on:

```py
assert_that(users).extracting('user', sort=['active','age']).is_equal_to(['Bob','Johnny','Fred'])
```

The `sort` can be any function (including an in-line `lambda`) that accepts as its single argument each item in the collection and the extracted items are ordered by the corresponding function return values:

```py
assert_that(users).extracting('user', sort=lambda x: -x['age'])\
    .is_equal_to(['Bob','Fred','Johnny'])
```

#### Dynamic Assertions on Objects

When testing attributes of an object, the basic `assertpy` assertions can get a little verbose like this:

```py
fred = Person('Fred','Smith')

assert_that(fred.first_name).is_equal_to('Fred')
assert_that(fred.name).is_equal_to('Fred Smith')
assert_that(fred.say_hello()).is_equal_to('Hello, Fred!')
```

So, `assertpy` takes advantage of the awesome dyanmism in the Python runtime to provide dynamic assertions in the form of `has_<name>()` where `<name>` is the name of any attribute, property, or zero-argument method on the given object.

Using dynamic assertions, we can rewrite the above assertions in a more compact and readable way like this:

```py
assert_that(fred).has_first_name('Fred')
assert_that(fred).has_name('Fred Smith')
assert_that(fred).has_say_hello('Hello, Fred!')
```

Since `fred` has the attribute `first_name`, the dynamic assertion method `has_first_name()` is available.
Similarly, the property `name` can be tested via `has_name()` and the zero-argument method `say_hello()` via
the `has_say_hello()` assertion.

As noted above, dynamic assertions also work on dicts:

```py
fred = {'first_name': 'Fred', 'last_name': 'Smith'}

assert_that(fred).has_first_name('Fred')
assert_that(fred).has_last_name('Smith')
```

### Failure

The `assertpy` library includes a `fail()` method to explicitly force a test failure.  It can be used like this:

```py
from assertpy import assert_that,fail

def test_fail():
    fail('forced failure')
```

A very useful test pattern that requires the `fail()` method is to verify the exact contents of an error message. For example:

```py
from assertpy import assert_that,fail

def test_error_msg():
    try:
        some_func('foo')
        fail('should have raised error')
    except RuntimeError as e:
        assert_that(str(e)).is_equal_to('some err')
```

In the above code, we invoke `some_func()` with a bad argument which raises an exception.  The exception is then handled by the `try..except` block and the exact contents of the error message are verified.  Lastly, if an exception is *not* thrown by `some_func()` as expected, we fail the test via `fail()`.

This pattern is only used when you need to verify the contents of the error message.  If you only wish to check for an expected exception (and don't need to verify the contents of the error message itself), you're much better off using a test runner that supports expected exceptions.  [Nose](http://nose.readthedocs.org/) provides a [@raises](http://nose.readthedocs.org/en/latest/testing_tools.html#nose.tools.raises) decorator. [Pytest](http://pytest.org/latest/contents.html) has a [pytest.raises](http://pytest.org/latest/assert.html#assertions-about-expected-exceptions) method.


#### Expected Exceptions

We recommend you use your test runner to check for expected exceptions (Pytest's [pytest.raises](http://pytest.org/latest/assert.html#assertions-about-expected-exceptions) context or Nose's [@raises](http://nose.readthedocs.org/en/latest/testing_tools.html#nose.tools.raises) decorator).  In the special case of invoking a function, `assertpy` provides its own expected exception handling via a simple fluent API.

Given a function `some_func()`:

```py
def some_func(arg):
    raise RuntimeError('some err')
```

We can expect a `RuntimeError` with:

```py
assert_that(some_func).raises(RuntimeError).when_called_with('foo')
```

Additionally, the error message contents are chained, and can be further verified:

```py
assert_that(some_func).raises(RuntimeError).when_called_with('foo')\
    .is_length(8).starts_with('some').is_equal_to('some err')
```


#### Custom Error Messages

Sometimes you need a little more information in your failures.  For this case, `assertpy` includes a `described_as()` helper that will add a custom message when a failure occurs.  For example, if we had these failing assertions:

```py
assert_that(1+2).is_equal_to(2)
assert_that(1+2).described_as('adding stuff').is_equal_to(2)
```

When run (separately, of course), they would produce these errors:

```
Expected <3> to be equal to <2>, but was not.
[adding stuff] Expected <3> to be equal to <2>, but was not.
```

The `described_as()` helper causes the custom message `adding stuff` to be prepended to the front of the second error.


#### Just A Warning

There are times when you only want a warning message instead of a failing test. For example, if you are using `assertpy`
to write defensive assertions in the normal flow of your application (not in a test).  In this case, just replace
`assert_that` with `assert_warn`.

```py
assert_warn('foo').is_length(4)
assert_warn('foo').is_empty()
assert_warn('foo').is_false()
assert_warn('foo').is_digit()
assert_warn('123').is_alpha()
assert_warn('foo').is_upper()
assert_warn('FOO').is_lower()
assert_warn('foo').is_equal_to('bar')
assert_warn('foo').is_not_equal_to('foo')
assert_warn('foo').is_equal_to_ignoring_case('BAR')
```

Even though all of the above assertions fail, an `AssertionError` is never raised and execution is
not halted.  Instead, the failed assertions merely log the following warning messages to `stdout`:

```
2019-10-27 20:00:35 WARNING [test_readme.py:423]: Expected <foo> to be of length <4>, but was <3>.
2019-10-27 20:00:35 WARNING [test_readme.py:424]: Expected <foo> to be empty string, but was not.
2019-10-27 20:00:35 WARNING [test_readme.py:425]: Expected <False>, but was not.
2019-10-27 20:00:35 WARNING [test_readme.py:426]: Expected <foo> to contain only digits, but did not.
2019-10-27 20:00:35 WARNING [test_readme.py:427]: Expected <123> to contain only alphabetic chars, but did not.
2019-10-27 20:00:35 WARNING [test_readme.py:428]: Expected <foo> to contain only uppercase chars, but did not.
2019-10-27 20:00:35 WARNING [test_readme.py:429]: Expected <FOO> to contain only lowercase chars, but did not.
2019-10-27 20:00:35 WARNING [test_readme.py:430]: Expected <foo> to be equal to <bar>, but was not.
2019-10-27 20:00:35 WARNING [test_readme.py:431]: Expected <foo> to be not equal to <foo>, but was.
2019-10-27 20:00:35 WARNING [test_readme.py:432]: Expected <foo> to be case-insensitive equal to <BAR>, but was not.
```

##### Custom Warning Logger

By default, warnings are written to `stdout` with a formatter that includes timestamp, log level `WARNING`, and message,
plus some stack frame magic to find the correct filename and line number where `assert_warn()` was called and failed.
For more control or better log formatting, you can pass in your own customer logger when you call `assert_warn()`.

```py
assert_warn('foo', logger=my_logger).is_length(4)
assert_warn('foo', logger=my_logger).is_equal_to_ignoring_case('BAR')
```

### Soft Assertions

Normally, an assertion failure will halt test execution immediately by raising an error. Soft assertions are
way to collect assertion failures together, to be raise all at once at the end, without halting your test.  To use
soft assertions in `assertpy`, just use the `with soft_assertions()` context manager, like this:

```py
from assertpy import assert_that, soft_assertions

with soft_assertions():
    assert_that('foo').is_length(4)
    assert_that('foo').is_empty()
    assert_that('foo').is_false()
    assert_that('foo').is_digit()
    assert_that('123').is_alpha()
    assert_that('foo').is_upper()
    assert_that('FOO').is_lower()
    assert_that('foo').is_equal_to('bar')
    assert_that('foo').is_not_equal_to('foo')
    assert_that('foo').is_equal_to_ignoring_case('BAR')
```

At the end of the block, all assertion failures are collected together and a single `AssertionError` is raised:

```
AssertionError: soft assertion failures:
1. Expected <foo> to be of length <4>, but was <3>.
2. Expected <foo> to be empty string, but was not.
3. Expected <False>, but was not.
4. Expected <foo> to contain only digits, but did not.
5. Expected <123> to contain only alphabetic chars, but did not.
6. Expected <foo> to contain only uppercase chars, but did not.
7. Expected <FOO> to contain only lowercase chars, but did not.
8. Expected <foo> to be equal to <bar>, but was not.
9. Expected <foo> to be not equal to <foo>, but was.
10. Expected <foo> to be case-insensitive equal to <BAR>, but was not.
```

Also, note that *only* assertion failures are collected, errors such as `TypeError` or `ValueError` are raised immediately.
Triggering an explicit test failure with `fail()` will similarly halt execution immediately.  If you need more
forgiving behavior, you can use `soft_fail()` which is collected like any other failing assertion within a soft assertions block.

### Snapshot Testing

Take a snapshot of a python data structure, store it on disk in JSON format, and automatically compare the latest data to the stored data on every test run.  The snapshot testing features of `assertpy` are borrowed from [Jest](https://facebook.github.io/jest/), a well-known and powerful Javascript testing framework.  Snapshots require Python 3.

For example, snapshot the following dict:

```py
assert_that({'a':1,'b':2,'c':3}).snapshot()
```

Stored on disk as the following JSON:

```
{
  "a": 1,
  "b": 2,
  "c": 3
}
```

Additionally, the on-disk snapshot format supports most python data structures (dict, list, object, etc).  For example:

```py
assert_that(None).snapshot()
assert_that(True).snapshot()
assert_that(123).snapshot()
assert_that(-987.654).snapshot()
assert_that('foo').snapshot()
assert_that([1,2,3]).snapshot()
assert_that(set(['a','b','c'])).snapshot()
assert_that({'a':1,'b':2,'c':3}).snapshot()
assert_that(1 + 2j).snapshot()
assert_that(someobj).snapshot()
```

Snapshot artifacts (typically found in the `__snapshots` folder), should be committed to source control alongside any code changes.

On the first run (when the snapshot file doesn't yet exist), the snapshot is created, stored to disk, and the test is passed.  On all subsequent runs, the given data is compared to the on-disk snapshot, and the test fails if they don't match.  Failure means that some change occured, so either a bug or a known implementation changed.

#### Updating Snapshots

It's easy to update your snapshots...just delete them all and re-run the test suite to regenerate all snapshots.

#### Snapshot Parameters

By default, snapshots are identified by test filename plus line number.  Alternately, you can specify a custom identifier using the `id` keyword:

```py
assert_that({'a':1,'b':2,'c':3}).snapshot(id='my-custom-id')
```

By default, all snapshots (including those with custom identifiers) are stored in the `__snapshots` folder.  Alternately, you can specify a custom path using the `path` keyword:

```py
assert_that({'a':1,'b':2,'c':3}).snapshot(path='my-custom-folder')
```

#### Snapshot Blackbox

Functional testing (which snapshot testing falls under) is very much blackbox testing.  When something goes wrong, it's hard to pinpoint the issue, because functional tests provide little *isolation*.  On the plus side, snapshots can provide enormous *leverage* as a few well-placed snapshot tests can strongly verify an application is working that would otherwise require dozens if not hundreds of unit tests.

### Extension System - adding custom assertions

Sometimes you want to add your own custom assertions to `assertpy`.  This can be done using the `add_extension()` helper.

For example, we can write a custom `is_5()` assertion like this:

```py
from assertpy import add_extension

def is_5(self):
    if self.val != 5:
        self.error(f'{self.val} is NOT 5!')
    return self

add_extension(is_5)
```

Once registered with `assertpy`, we can use our new assertion as expected:

```py
assert_that(5).is_5()
assert_that(6).is_5()  # fails!
```

Of course, `is_5()` is only available in the test file where `add_extension()` is called.  If you want better control of scope of your custom extensions, such as writing extensions once and using them in any test file, you'll need to use the test setup functionality of your test runner.  With [pytest](http://pytest.org/latest/contents.html), you can just use a `conftest.py` file and a _fixture_.

For example, if your `conftest.py` is:

```py
import pytest
from assertpy import add_extension

def is_5(self):
    if self.val != 5:
        self.error(f'{self.val} is NOT 5!')
    return self

@pytest.fixture(scope='module')
def my_extensions():
    add_extension(is_5)
```

Then in any test method in any test file (like `test_foo.py` for example), you just pass in the fixture and all of your extensions are available, like this:

```py
from assertpy import assert_that

def test_foo(my_extensions):
    assert_that(5).is_5()
    assert_that(6).is_5()  # fails!
```

where the `my_extensions` parameter must be the name of your fixture function in `conftest.py`.  See the [fixture docs](https://docs.pytest.org/en/latest/fixture.html) for details.

#### Writing custom assertions

Here are some useful tips to help you write your own custom assertions:

1. Use `self` as first param (as if your function was an instance method).
2. Use `self.val` to get the _actual_ value to be tested.
3. It's better to test the negative, and then fail if true.
4. Fail by raising an `AssertionError` (the `self.error()` helper does this for you).
5. Always use the `self.error()` helper to fail (and print your failure message).
6. Always `return self` to allow for chaining.

Putting it all together, here is another custom assertion example, but annotated with comments:

```py
def is_multiple_of(self, other):
    # validate actual value - must be "integer" (aka int or long)
    if isinstance(self.val, numbers.Integral) is False or self.val <= 0:
        # bad input is error, not an assertion fail, so raise error
        raise TypeError('val must be a positive integer')

    # validate expected value
    if isinstance(other, numbers.Integral) is False or other <= 0:
        raise TypeError('given arg must be a positive integer')

    # calc remainder using divmod() built-in
    _, rem = divmod(self.val, other)

    # test the negative (is remainder non-zero?)
    if rem > 0:
        # non-zero remainder, so not multiple -> we fail!
        self.error('Expected <%s> to be multiple of <%s>, but was not.' % (self.val, other))

    # success, and return self to allow chaining
    return self
```

### Chaining

One of the nicest aspects of any fluent API is the ability to chain methods together.  In the case of `assertpy`, chaining
allows you to write assertions as single statement -- that reads like a sentence, and is easy to understand.

Here are just a few examples:

```py
assert_that('foo').is_length(3).starts_with('f').ends_with('oo')

assert_that([1,2,3]).is_type_of(list).contains(1,2).does_not_contain(4,5)

assert_that(fred).has_first_name('Fred').has_last_name('Smith').has_shoe_size(12)

assert_that(people).is_length(2).extracting('first_name').contains('Fred','Joe')
```


## Future

There are always a few new features in the works...if you'd like to help, check out the [open issues](https://github.com/assertpy/assertpy/issues) and see our [Contributing](CONTRIBUTING.md) doc.


## License

All files are licensed under the BSD 3-Clause License as follows:

> Copyright (c) 2015-2019, Activision Publishing, Inc.
> All rights reserved.
>
> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
>
> 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
>
> 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
>
> 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
>
> THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.