1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import division
import numpy as np
cimport numpy as np
DTYPE = np.float
ctypedef np.float_t DTYPE_t
cdef extern from "numpy/npy_math.h" nogil:
bint npy_isnan(double x)
cimport cython
@cython.boundscheck(False) # turn off bounds-checking for entire function
def convolve1d_boundary_none(np.ndarray[DTYPE_t, ndim=1] f,
np.ndarray[DTYPE_t, ndim=1] g):
if g.shape[0] % 2 != 1:
raise ValueError("Convolution kernel must have odd dimensions")
assert f.dtype == DTYPE and g.dtype == DTYPE
cdef int nx = f.shape[0]
cdef int nkx = g.shape[0]
cdef int wkx = nkx // 2
# The following need to be set to zeros rather than empty because the
# boundary does not get reset.
cdef np.ndarray[DTYPE_t, ndim=1] fixed = np.zeros([nx], dtype=DTYPE)
cdef np.ndarray[DTYPE_t, ndim=1] conv = np.zeros([nx], dtype=DTYPE)
cdef unsigned int i, ii
cdef int iimin, iimax
cdef DTYPE_t top, bot, ker, val
# release the GIL
with nogil:
# Need a first pass to replace NaN values with value convolved from
# neighboring values
for i in range(nx):
if npy_isnan(f[i]) and i >= wkx and i < nx - wkx:
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
val = f[ii]
if not npy_isnan(val):
ker = g[<unsigned int>(wkx + ii - i)]
top += val * ker
bot += ker
if bot != 0.:
fixed[i] = top / bot
else:
fixed[i] = f[i]
else:
fixed[i] = f[i]
# Now run the proper convolution
for i in range(wkx, nx - wkx):
if not npy_isnan(fixed[i]):
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
val = fixed[ii]
ker = g[<unsigned int>(wkx + ii - i)]
if not npy_isnan(val):
top += val * ker
bot += ker
if bot != 0:
conv[i] = top / bot
else:
conv[i] = fixed[i]
else:
conv[i] = fixed[i]
# GIL acquired again here
return conv
@cython.boundscheck(False) # turn off bounds-checking for entire function
def convolve2d_boundary_none(np.ndarray[DTYPE_t, ndim=2] f,
np.ndarray[DTYPE_t, ndim=2] g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1:
raise ValueError("Convolution kernel must have odd dimensions")
assert f.dtype == DTYPE and g.dtype == DTYPE
cdef int nx = f.shape[0]
cdef int ny = f.shape[1]
cdef int nkx = g.shape[0]
cdef int nky = g.shape[1]
cdef int wkx = nkx // 2
cdef int wky = nky // 2
# The following need to be set to zeros rather than empty because the
# boundary does not get reset.
cdef np.ndarray[DTYPE_t, ndim=2] fixed = np.zeros([nx, ny], dtype=DTYPE)
cdef np.ndarray[DTYPE_t, ndim=2] conv = np.zeros([nx, ny], dtype=DTYPE)
cdef unsigned int i, j, ii, jj
cdef int iimin, iimax, jjmin, jjmax
cdef DTYPE_t top, bot, ker, val
# release the GIL
with nogil:
# Need a first pass to replace NaN values with value convolved from
# neighboring values
for i in range(nx):
for j in range(ny):
if npy_isnan(f[i, j]) and i >= wkx and i < nx - wkx \
and j >= wky and j < ny - wky:
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
for jj in range(j - wky, j + wky + 1):
val = f[ii, jj]
if not npy_isnan(val):
ker = g[<unsigned int>(wkx + ii - i),
<unsigned int>(wky + jj - j)]
top += val * ker
bot += ker
if bot != 0.:
fixed[i, j] = top / bot
else:
fixed[i, j] = f[i, j]
else:
fixed[i, j] = f[i, j]
# Now run the proper convolution
for i in range(wkx, nx - wkx):
for j in range(wky, ny - wky):
if not npy_isnan(fixed[i, j]):
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
for jj in range(j - wky, j + wky + 1):
val = fixed[ii, jj]
ker = g[<unsigned int>(wkx + ii - i),
<unsigned int>(wky + jj - j)]
if not npy_isnan(val):
top += val * ker
bot += ker
if bot != 0:
conv[i, j] = top / bot
else:
conv[i, j] = fixed[i, j]
else:
conv[i, j] = fixed[i, j]
# GIL acquired again here
return conv
@cython.boundscheck(False) # turn off bounds-checking for entire function
def convolve3d_boundary_none(np.ndarray[DTYPE_t, ndim=3] f,
np.ndarray[DTYPE_t, ndim=3] g):
if g.shape[0] % 2 != 1 or g.shape[1] % 2 != 1 or g.shape[2] % 2 != 1:
raise ValueError("Convolution kernel must have odd dimensions")
assert f.dtype == DTYPE and g.dtype == DTYPE
cdef int nx = f.shape[0]
cdef int ny = f.shape[1]
cdef int nz = f.shape[2]
cdef int nkx = g.shape[0]
cdef int nky = g.shape[1]
cdef int nkz = g.shape[2]
cdef int wkx = nkx // 2
cdef int wky = nky // 2
cdef int wkz = nkz // 2
# The following need to be set to zeros rather than empty because the
# boundary does not get reset.
cdef np.ndarray[DTYPE_t, ndim=3] fixed = np.zeros([nx, ny, nz], dtype=DTYPE)
cdef np.ndarray[DTYPE_t, ndim=3] conv = np.zeros([nx, ny, nz], dtype=DTYPE)
cdef unsigned int i, j, k, ii, jj, kk
cdef int iimin, iimax, jjmin, jjmax, kkmin, kkmax
cdef DTYPE_t top, bot, ker, val
# release the GIL
with nogil:
# Need a first pass to replace NaN values with value convolved from
# neighboring values
for i in range(nx):
for j in range(ny):
for k in range(nz):
if npy_isnan(f[i, j, k]) and i >= wkx and i < nx - wkx \
and j >= wky and j < ny - wky and k >= wkz and k <= nz - wkz:
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
for jj in range(j - wky, j + wky + 1):
for kk in range(k - wkz, k + wkz + 1):
val = f[ii, jj, kk]
if not npy_isnan(val):
ker = g[<unsigned int>(wkx + ii - i),
<unsigned int>(wky + jj - j),
<unsigned int>(wkz + kk - k)]
top += val * ker
bot += ker
if bot != 0.:
fixed[i, j, k] = top / bot
else:
fixed[i, j, k] = f[i, j, k]
else:
fixed[i, j, k] = f[i, j, k]
# Now run the proper convolution
for i in range(wkx, nx - wkx):
for j in range(wky, ny - wky):
for k in range(wkz, nz - wkz):
if not npy_isnan(fixed[i, j, k]):
top = 0.
bot = 0.
for ii in range(i - wkx, i + wkx + 1):
for jj in range(j - wky, j + wky + 1):
for kk in range(k - wkz, k + wkz + 1):
val = fixed[ii, jj, kk]
ker = g[<unsigned int>(wkx + ii - i),
<unsigned int>(wky + jj - j),
<unsigned int>(wkz + kk - k)]
if not npy_isnan(val):
top += val * ker
bot += ker
if bot != 0:
conv[i, j, k] = top / bot
else:
conv[i, j, k] = fixed[i, j, k]
else:
conv[i, j, k] = fixed[i, j, k]
# GIL acquired again here
return conv
|