File: test_kernel_class.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (514 lines) | stat: -rw-r--r-- 18,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import itertools

import numpy as np
from numpy.testing import assert_almost_equal, assert_allclose

from ...tests.helper import pytest
from ..convolve import convolve, convolve_fft
from ..kernels import (
    Gaussian1DKernel, Gaussian2DKernel, Box1DKernel, Box2DKernel,
    Trapezoid1DKernel, TrapezoidDisk2DKernel, MexicanHat1DKernel,
    Tophat2DKernel, MexicanHat2DKernel, AiryDisk2DKernel, Ring2DKernel,
    CustomKernel, Model1DKernel, Model2DKernel, Kernel1D, Kernel2D)

from ..utils import KernelSizeError
from ...modeling.models import Box2D, Gaussian1D, Gaussian2D
from ...utils.exceptions import AstropyWarning, AstropyUserWarning

try:
    from scipy.ndimage import filters
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False

WIDTHS_ODD = [3, 5, 7, 9]
WIDTHS_EVEN = [2, 4, 8, 16]
MODES = ['center', 'linear_interp', 'oversample', 'integrate']
KERNEL_TYPES = [Gaussian1DKernel, Gaussian2DKernel,
                Box1DKernel, Box2DKernel,
                Trapezoid1DKernel, TrapezoidDisk2DKernel,
                MexicanHat1DKernel, Tophat2DKernel, AiryDisk2DKernel, Ring2DKernel]


NUMS = [1, 1., np.float(1.), np.float32(1.), np.float64(1.)]


# Test data
delta_pulse_1D = np.zeros(81)
delta_pulse_1D[40] = 1

delta_pulse_2D = np.zeros((81, 81))
delta_pulse_2D[40, 40] = 1

random_data_1D = np.random.rand(61)
random_data_2D = np.random.rand(61, 61)


class TestKernels(object):
    """
    Test class for the built-in convolution kernels.
    """

    @pytest.mark.skipif('not HAS_SCIPY')
    @pytest.mark.parametrize(('width'), WIDTHS_ODD)
    def test_scipy_filter_gaussian(self, width):
        """
        Test GaussianKernel against SciPy ndimage gaussian filter.
        """
        gauss_kernel_1D = Gaussian1DKernel(width)
        gauss_kernel_1D.normalize()
        gauss_kernel_2D = Gaussian2DKernel(width)
        gauss_kernel_2D.normalize()

        astropy_1D = convolve(delta_pulse_1D, gauss_kernel_1D, boundary='fill')
        astropy_2D = convolve(delta_pulse_2D, gauss_kernel_2D, boundary='fill')

        scipy_1D = filters.gaussian_filter(delta_pulse_1D, width)
        scipy_2D = filters.gaussian_filter(delta_pulse_2D, width)

        assert_almost_equal(astropy_1D, scipy_1D, decimal=12)
        assert_almost_equal(astropy_2D, scipy_2D, decimal=12)

    @pytest.mark.skipif('not HAS_SCIPY')
    @pytest.mark.parametrize(('width'), WIDTHS_ODD)
    def test_scipy_filter_gaussian_laplace(self, width):
        """
        Test MexicanHat kernels against SciPy ndimage gaussian laplace filters.
        """
        mexican_kernel_1D = MexicanHat1DKernel(width)
        mexican_kernel_2D = MexicanHat2DKernel(width)

        astropy_1D = convolve(delta_pulse_1D, mexican_kernel_1D, boundary='fill')
        astropy_2D = convolve(delta_pulse_2D, mexican_kernel_2D, boundary='fill')

        # The Laplace of Gaussian filter is an inverted Mexican Hat
        # filter.
        scipy_1D = -filters.gaussian_laplace(delta_pulse_1D, width)
        scipy_2D = -filters.gaussian_laplace(delta_pulse_2D, width)

        # There is a slight deviation in the normalization. They differ by a
        # factor of ~1.0000284132604045. The reason is not known.
        assert_almost_equal(astropy_1D, scipy_1D, decimal=5)
        assert_almost_equal(astropy_2D, scipy_2D, decimal=5)

    @pytest.mark.parametrize(('kernel_type', 'width'), list(itertools.product(KERNEL_TYPES, WIDTHS_ODD)))
    def test_delta_data(self, kernel_type,  width):
        """
        Test smoothing of an image with a single positive pixel
        """
        if kernel_type == AiryDisk2DKernel and not HAS_SCIPY:
            pytest.skip("Omitting AiryDisk2DKernel, which requires SciPy")
        if not kernel_type == Ring2DKernel:
            kernel = kernel_type(width)
        else:
            kernel = kernel_type(width, width * 0.2)

        if kernel.dimension == 1:
            c1 = convolve_fft(delta_pulse_1D, kernel, boundary='fill')
            c2 = convolve(delta_pulse_1D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)
        else:
            c1 = convolve_fft(delta_pulse_2D, kernel, boundary='fill')
            c2 = convolve(delta_pulse_2D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)

    @pytest.mark.parametrize(('kernel_type', 'width'), list(itertools.product(KERNEL_TYPES, WIDTHS_ODD)))
    def test_random_data(self, kernel_type, width):
        """
        Test smoothing of an image made of random noise
        """
        if kernel_type == AiryDisk2DKernel and not HAS_SCIPY:
            pytest.skip("Omitting AiryDisk2DKernel, which requires SciPy")
        if not kernel_type == Ring2DKernel:
            kernel = kernel_type(width)
        else:
            kernel = kernel_type(width, width * 0.2)

        if kernel.dimension == 1:
            c1 = convolve_fft(random_data_1D, kernel, boundary='fill')
            c2 = convolve(random_data_1D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)
        else:
            c1 = convolve_fft(random_data_2D, kernel, boundary='fill')
            c2 = convolve(random_data_2D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)

    @pytest.mark.parametrize(('width'), WIDTHS_ODD)
    def test_uniform_smallkernel(self, width):
        """
        Test smoothing of an image with a single positive pixel

        Instead of using kernel class, uses a simple, small kernel
        """
        kernel = np.ones([width, width])

        c2 = convolve_fft(delta_pulse_2D, kernel, boundary='fill')
        c1 = convolve(delta_pulse_2D, kernel, boundary='fill')
        assert_almost_equal(c1, c2, decimal=12)

    @pytest.mark.parametrize(('width'), WIDTHS_ODD)
    def test_smallkernel_vs_Box2DKernel(self, width):
        """
        Test smoothing of an image with a single positive pixel
        """
        kernel1 = np.ones([width, width]) / width ** 2
        kernel2 = Box2DKernel(width)

        c2 = convolve_fft(delta_pulse_2D, kernel2, boundary='fill')
        c1 = convolve_fft(delta_pulse_2D, kernel1, boundary='fill')

        assert_almost_equal(c1, c2, decimal=12)

    def test_convolve_1D_kernels(self):
        """
        Check if convolving two kernels with each other works correctly.
        """
        gauss_1 = Gaussian1DKernel(3)
        gauss_2 = Gaussian1DKernel(4)
        test_gauss_3 = Gaussian1DKernel(5)

        gauss_3 = convolve(gauss_1, gauss_2)
        assert np.all(np.abs((gauss_3 - test_gauss_3).array) < 0.01)

    def test_convolve_2D_kernels(self):
        """
        Check if convolving two kernels with each other works correctly.
        """
        gauss_1 = Gaussian2DKernel(3)
        gauss_2 = Gaussian2DKernel(4)
        test_gauss_3 = Gaussian2DKernel(5)

        gauss_3 = convolve(gauss_1, gauss_2)
        assert np.all(np.abs((gauss_3 - test_gauss_3).array) < 0.01)

    @pytest.mark.parametrize(('number'), NUMS)
    def test_multiply_scalar(self, number):
        """
        Check if multiplying a kernel with a scalar works correctly.
        """
        gauss = Gaussian1DKernel(3)
        gauss_new = number * gauss
        assert_almost_equal(gauss_new.array, gauss.array * number, decimal=12)

    @pytest.mark.parametrize(('number'), NUMS)
    def test_multiply_scalar_type(self, number):
        """
        Check if multiplying a kernel with a scalar works correctly.
        """
        gauss = Gaussian1DKernel(3)
        gauss_new = number * gauss
        assert type(gauss_new) is Gaussian1DKernel

    @pytest.mark.parametrize(('number'), NUMS)
    def test_rmultiply_scalar_type(self, number):
        """
        Check if multiplying a kernel with a scalar works correctly.
        """
        gauss = Gaussian1DKernel(3)
        gauss_new = gauss * number
        assert type(gauss_new) is Gaussian1DKernel

    def test_multiply_kernel1d(self):
        """Test that multiplying two 1D kernels raises an exception."""
        gauss = Gaussian1DKernel(3)
        with pytest.raises(Exception):
            gauss * gauss

    def test_multiply_kernel2d(self):
        """Test that multiplying two 2D kernels raises an exception."""
        gauss = Gaussian2DKernel(3)
        with pytest.raises(Exception):
            gauss * gauss

    def test_multiply_kernel1d_kernel2d(self):
        """
        Test that multiplying a 1D kernel with a 2D kernel raises an
        exception.
        """
        with pytest.raises(Exception):
            Gaussian1DKernel(3) * Gaussian2DKernel(3)

    def test_add_kernel_scalar(self):
        """Test that adding a scalar to a kernel raises an exception."""
        with pytest.raises(Exception):
            Gaussian1DKernel(3) + 1

    def test_model_1D_kernel(self):
        """
        Check Model1DKernel against Gaussian1Dkernel
        """
        stddev = 5.
        gauss = Gaussian1D(1. / np.sqrt(2 * np.pi * stddev**2), 0, stddev)
        model_gauss_kernel = Model1DKernel(gauss, x_size=21)
        gauss_kernel = Gaussian1DKernel(stddev, x_size=21)
        assert_almost_equal(model_gauss_kernel.array, gauss_kernel.array,
                            decimal=12)

    def test_model_2D_kernel(self):
        """
        Check Model2DKernel against Gaussian2Dkernel
        """
        stddev = 5.
        gauss = Gaussian2D(1. / (2 * np.pi * stddev**2), 0, 0, stddev, stddev)
        model_gauss_kernel = Model2DKernel(gauss, x_size=21)
        gauss_kernel = Gaussian2DKernel(stddev, x_size=21)
        assert_almost_equal(model_gauss_kernel.array, gauss_kernel.array,
                            decimal=12)

    def test_custom_1D_kernel(self):
        """
        Check CustomKernel against Box1DKernel.
        """
        #Define one dimensional array:
        array = np.ones(5)
        custom = CustomKernel(array)
        custom.normalize()
        box = Box1DKernel(5)

        c2 = convolve(delta_pulse_1D, custom, boundary='fill')
        c1 = convolve(delta_pulse_1D, box, boundary='fill')
        assert_almost_equal(c1, c2, decimal=12)

    def test_custom_2D_kernel(self):
        """
        Check CustomKernel against Box2DKernel.
        """
        #Define one dimensional array:
        array = np.ones((5, 5))
        custom = CustomKernel(array)
        custom.normalize()
        box = Box2DKernel(5)

        c2 = convolve(delta_pulse_2D, custom, boundary='fill')
        c1 = convolve(delta_pulse_2D, box, boundary='fill')
        assert_almost_equal(c1, c2, decimal=12)

    def test_custom_1D_kernel_list(self):
        """
        Check if CustomKernel works with lists.
        """
        custom = CustomKernel([1, 1, 1, 1, 1])
        assert custom.is_bool is True

    def test_custom_2D_kernel_list(self):
        """
        Check if CustomKernel works with lists.
        """
        custom = CustomKernel([[1, 1, 1],
                               [1, 1, 1],
                               [1, 1, 1]])
        assert custom.is_bool is True

    def test_custom_1D_kernel_zerosum(self):
        """
        Check if CustomKernel works when the input array/list
        sums to zero.
        """
        array = [-2, -1, 0, 1, 2]
        custom = CustomKernel(array)
        custom.normalize()
        assert custom.truncation == 0.
        assert custom._kernel_sum == 0.

    def test_custom_2D_kernel_zerosum(self):
        """
        Check if CustomKernel works when the input array/list
        sums to zero.
        """
        array = [[0, -1, 0], [-1, 4, -1], [0, -1, 0]]
        custom = CustomKernel(array)
        custom.normalize()
        assert custom.truncation == 0.
        assert custom._kernel_sum == 0.

    def test_custom_kernel_odd_error(self):
        """
        Check if CustomKernel raises if the array size is odd.
        """
        with pytest.raises(KernelSizeError):
            CustomKernel([1, 1, 1, 1])

    def test_add_1D_kernels(self):
        """
        Check if adding of two 1D kernels works.
        """
        box_1 = Box1DKernel(5)
        box_2 = Box1DKernel(3)
        box_3 = Box1DKernel(1)
        box_sum_1 = box_1 + box_2 + box_3
        box_sum_2 = box_2 + box_3 + box_1
        box_sum_3 = box_3 + box_1 + box_2
        ref = [1/5., 1/5. + 1/3., 1 + 1/3. + 1/5., 1/5. + 1/3., 1/5.]
        assert_almost_equal(box_sum_1.array, ref, decimal=12)
        assert_almost_equal(box_sum_2.array, ref, decimal=12)
        assert_almost_equal(box_sum_3.array, ref, decimal=12)

        # Assert that the kernels haven't changed
        assert_almost_equal(box_1.array, [0.2, 0.2, 0.2, 0.2, 0.2], decimal=12)
        assert_almost_equal(box_2.array, [1/3., 1/3., 1/3.], decimal=12)
        assert_almost_equal(box_3.array, [1], decimal=12)

    def test_add_2D_kernels(self):
        """
        Check if adding of two 1D kernels works.
        """
        box_1 = Box2DKernel(3)
        box_2 = Box2DKernel(1)
        box_sum_1 = box_1 + box_2
        box_sum_2 = box_2 + box_1
        ref = [[1 / 9., 1 / 9., 1 / 9.],
               [1 / 9., 1 + 1 / 9., 1 / 9.],
               [1 / 9., 1 / 9., 1 / 9.]]
        ref_1 = [[1 / 9., 1 / 9., 1 / 9.],
               [1 / 9., 1 / 9., 1 / 9.],
               [1 / 9., 1 / 9., 1 / 9.]]
        assert_almost_equal(box_2.array, [[1]], decimal=12)
        assert_almost_equal(box_1.array, ref_1, decimal=12)
        assert_almost_equal(box_sum_1.array, ref, decimal=12)
        assert_almost_equal(box_sum_2.array, ref, decimal=12)

    def test_Gaussian1DKernel_even_size(self):
        """
        Check if even size for GaussianKernel works.
        """
        gauss = Gaussian1DKernel(3, x_size=10)
        assert gauss.array.size == 10

    def test_Gaussian2DKernel_even_size(self):
        """
        Check if even size for GaussianKernel works.
        """
        gauss = Gaussian2DKernel(3, x_size=10, y_size=10)
        assert gauss.array.shape == (10, 10)

    def test_normalize_peak(self):
        """
        Check if normalize works with peak mode.
        """
        custom = CustomKernel([1, 2, 3, 2, 1])
        custom.normalize(mode='peak')
        assert custom.array.max() == 1

    def test_check_kernel_attributes(self):
        """
        Check if kernel attributes are correct.
        """
        box = Box2DKernel(5)

        # Check truncation
        assert box.truncation == 0

        # Check model
        assert isinstance(box.model, Box2D)

        # Check center
        assert box.center == [2, 2]

        # Check normalization
        box.normalize()
        assert_almost_equal(box._kernel_sum, 1., decimal=12)

        # Check separability
        assert box.separable

    @pytest.mark.parametrize(('kernel_type', 'mode'), list(itertools.product(KERNEL_TYPES, MODES)))
    def test_dicretize_modes(self, kernel_type, mode):
        """
        Check if the different modes result in kernels that work with convolve.
        Use only small kernel width, to make the test pass quickly.
        """
        if kernel_type == AiryDisk2DKernel and not HAS_SCIPY:
            pytest.skip("Omitting AiryDisk2DKernel, which requires SciPy")
        if not kernel_type == Ring2DKernel:
            kernel = kernel_type(3)
        else:
            kernel = kernel_type(3, 3 * 0.2)

        if kernel.dimension == 1:
            c1 = convolve_fft(delta_pulse_1D, kernel, boundary='fill')
            c2 = convolve(delta_pulse_1D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)
        else:
            c1 = convolve_fft(delta_pulse_2D, kernel, boundary='fill')
            c2 = convolve(delta_pulse_2D, kernel, boundary='fill')
            assert_almost_equal(c1, c2, decimal=12)

    @pytest.mark.parametrize(('width'), WIDTHS_EVEN)
    def test_box_kernels_even_size(self, width):
        """
        Check if BoxKernel work properly with even sizes.
        """
        kernel_1D = Box1DKernel(width)
        assert kernel_1D.shape[0] % 2 != 0
        assert kernel_1D.array.sum() == 1.

        kernel_2D = Box2DKernel(width)
        assert np.all([_ % 2 != 0 for _ in kernel_2D.shape])
        assert kernel_2D.array.sum() == 1.

    def test_kernel_normalization(self):
        """
        Test that repeated normalizations do not change the kernel [#3747].
        """

        kernel = CustomKernel(np.ones(5))
        kernel.normalize()
        data = np.copy(kernel.array)

        kernel.normalize()
        assert_allclose(data, kernel.array)

        kernel.normalize()
        assert_allclose(data, kernel.array)

    def test_kernel_normalization_mode(self):
        """
        Test that an error is raised if mode is invalid.
        """
        with pytest.raises(ValueError):
            kernel = CustomKernel(np.ones(3))
            kernel.normalize(mode='invalid')

    def test_kernel1d_int_size(self):
        """
        Test that an error is raised if ``Kernel1D`` ``x_size`` is not
        an integer.
        """
        with pytest.raises(TypeError):
            Gaussian1DKernel(3, x_size=1.2)

    def test_kernel2d_int_xsize(self):
        """
        Test that an error is raised if ``Kernel2D`` ``x_size`` is not
        an integer.
        """
        with pytest.raises(TypeError):
            Gaussian2DKernel(3, x_size=1.2)

    def test_kernel2d_int_ysize(self):
        """
        Test that an error is raised if ``Kernel2D`` ``y_size`` is not
        an integer.
        """
        with pytest.raises(TypeError):
            Gaussian2DKernel(3, x_size=5, y_size=1.2)

    def test_kernel1d_initialization(self):
        """
        Test that an error is raised if an array or model is not
        specified for ``Kernel1D``.
        """
        with pytest.raises(TypeError):
            Kernel1D()

    def test_kernel2d_initialization(self):
        """
        Test that an error is raised if an array or model is not
        specified for ``Kernel2D``.
        """
        with pytest.raises(TypeError):
            Kernel2D()