1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from ..modeling.core import FittableModel, custom_model
from ..extern.six.moves import range
__all__ = ['discretize_model']
class DiscretizationError(Exception):
"""
Called when discretization of models goes wrong.
"""
class KernelSizeError(Exception):
"""
Called when size of kernels is even.
"""
def add_kernel_arrays_1D(array_1, array_2):
"""
Add two 1D kernel arrays of different size.
The arrays are added with the centers lying upon each other.
"""
if array_1.size > array_2.size:
new_array = array_1.copy()
center = array_1.size // 2
slice_ = slice(center - array_2.size // 2,
center + array_2.size // 2 + 1)
new_array[slice_] += array_2
return new_array
elif array_2.size > array_1.size:
new_array = array_2.copy()
center = array_2.size // 2
slice_ = slice(center - array_1.size // 2,
center + array_1.size // 2 + 1)
new_array[slice_] += array_1
return new_array
return array_2 + array_1
def add_kernel_arrays_2D(array_1, array_2):
"""
Add two 2D kernel arrays of different size.
The arrays are added with the centers lying upon each other.
"""
if array_1.size > array_2.size:
new_array = array_1.copy()
center = [axes_size // 2 for axes_size in array_1.shape]
slice_x = slice(center[1] - array_2.shape[1] // 2,
center[1] + array_2.shape[1] // 2 + 1)
slice_y = slice(center[0] - array_2.shape[0] // 2,
center[0] + array_2.shape[0] // 2 + 1)
new_array[slice_y, slice_x] += array_2
return new_array
elif array_2.size > array_1.size:
new_array = array_2.copy()
center = [axes_size // 2 for axes_size in array_2.shape]
slice_x = slice(center[1] - array_1.shape[1] // 2,
center[1] + array_1.shape[1] // 2 + 1)
slice_y = slice(center[0] - array_1.shape[0] // 2,
center[0] + array_1.shape[0] // 2 + 1)
new_array[slice_y, slice_x] += array_1
return new_array
return array_2 + array_1
def discretize_model(model, x_range, y_range=None, mode='center', factor=10):
"""
Function to evaluate analytical model functions on a grid.
So far the function can only deal with pixel coordinates.
Parameters
----------
model : `~astropy.modeling.FittableModel` or callable.
Analytic model function to be discretized. Callables, which are not an
instances of `~astropy.modeling.FittableModel` are passed to
`~astropy.modeling.custom_model` and then evaluated.
x_range : tuple
x range in which the model is evaluated. The difference between the
upper an lower limit must be a whole number, so that the output array
size is well defined.
y_range : tuple, optional
y range in which the model is evaluated. The difference between the
upper an lower limit must be a whole number, so that the output array
size is well defined. Necessary only for 2D models.
mode : str, optional
One of the following modes:
* ``'center'`` (default)
Discretize model by taking the value
at the center of the bin.
* ``'linear_interp'``
Discretize model by linearly interpolating
between the values at the corners of the bin.
For 2D models interpolation is bilinear.
* ``'oversample'``
Discretize model by taking the average
on an oversampled grid.
* ``'integrate'``
Discretize model by integrating the model
over the bin using `scipy.integrate.quad`.
Very slow.
factor : float or int
Factor of oversampling. Default = 10.
Returns
-------
array : `numpy.array`
Model value array
Notes
-----
The ``oversample`` mode allows to conserve the integral on a subpixel
scale. Here is the example of a normalized Gaussian1D:
.. plot::
:include-source:
import matplotlib.pyplot as plt
import numpy as np
from astropy.modeling.models import Gaussian1D
from astropy.convolution.utils import discretize_model
gauss_1D = Gaussian1D(1 / (0.5 * np.sqrt(2 * np.pi)), 0, 0.5)
y_center = discretize_model(gauss_1D, (-2, 3), mode='center')
y_corner = discretize_model(gauss_1D, (-2, 3), mode='linear_interp')
y_oversample = discretize_model(gauss_1D, (-2, 3), mode='oversample')
plt.plot(y_center, label='center sum = {0:3f}'.format(y_center.sum()))
plt.plot(y_corner, label='linear_interp sum = {0:3f}'.format(y_corner.sum()))
plt.plot(y_oversample, label='oversample sum = {0:3f}'.format(y_oversample.sum()))
plt.xlabel('pixels')
plt.ylabel('value')
plt.legend()
plt.show()
"""
if not callable(model):
raise TypeError('Model must be callable.')
if not isinstance(model, FittableModel):
model = custom_model(model)()
ndim = model.n_inputs
if ndim > 2:
raise ValueError('discretize_model only supports 1-d and 2-d models.')
if not float(np.diff(x_range)).is_integer():
raise ValueError("The difference between the upper an lower limit of"
" 'x_range' must be a whole number.")
if y_range:
if not float(np.diff(y_range)).is_integer():
raise ValueError("The difference between the upper an lower limit of"
" 'y_range' must be a whole number.")
if ndim == 2 and y_range is None:
raise ValueError("y range not specified, but model is 2-d")
if ndim == 1 and y_range is not None:
raise ValueError("y range specified, but model is only 1-d.")
if mode == "center":
if ndim == 1:
return discretize_center_1D(model, x_range)
elif ndim == 2:
return discretize_center_2D(model, x_range, y_range)
elif mode == "linear_interp":
if ndim == 1:
return discretize_linear_1D(model, x_range)
if ndim == 2:
return discretize_bilinear_2D(model, x_range, y_range)
elif mode == "oversample":
if ndim == 1:
return discretize_oversample_1D(model, x_range, factor)
if ndim == 2:
return discretize_oversample_2D(model, x_range, y_range, factor)
elif mode == "integrate":
if ndim == 1:
return discretize_integrate_1D(model, x_range)
if ndim == 2:
return discretize_integrate_2D(model, x_range, y_range)
else:
raise DiscretizationError('Invalid mode.')
def discretize_center_1D(model, x_range):
"""
Discretize model by taking the value at the center of the bin.
"""
x = np.arange(*x_range)
return model(x)
def discretize_center_2D(model, x_range, y_range):
"""
Discretize model by taking the value at the center of the pixel.
"""
x = np.arange(*x_range)
y = np.arange(*y_range)
x, y = np.meshgrid(x, y)
return model(x, y)
def discretize_linear_1D(model, x_range):
"""
Discretize model by performing a linear interpolation.
"""
# Evaluate model 0.5 pixel outside the boundaries
x = np.arange(x_range[0] - 0.5, x_range[1] + 0.5)
values_intermediate_grid = model(x)
return 0.5 * (values_intermediate_grid[1:] + values_intermediate_grid[:-1])
def discretize_bilinear_2D(model, x_range, y_range):
"""
Discretize model by performing a bilinear interpolation.
"""
# Evaluate model 0.5 pixel outside the boundaries
x = np.arange(x_range[0] - 0.5, x_range[1] + 0.5)
y = np.arange(y_range[0] - 0.5, y_range[1] + 0.5)
x, y = np.meshgrid(x, y)
values_intermediate_grid = model(x, y)
# Mean in y direction
values = 0.5 * (values_intermediate_grid[1:, :]
+ values_intermediate_grid[:-1, :])
# Mean in x direction
values = 0.5 * (values[:, 1:]
+ values[:, :-1])
return values
def discretize_oversample_1D(model, x_range, factor=10):
"""
Discretize model by taking the average on an oversampled grid.
"""
# Evaluate model on oversampled grid
x = np.arange(x_range[0] - 0.5 * (1 - 1 / factor),
x_range[1] + 0.5 * (1 + 1 / factor), 1. / factor)
values = model(x)
# Reshape and compute mean
values = np.reshape(values, (x.size // factor, factor))
return values.mean(axis=1)[:-1]
def discretize_oversample_2D(model, x_range, y_range, factor=10):
"""
Discretize model by taking the average on an oversampled grid.
"""
# Evaluate model on oversampled grid
x = np.arange(x_range[0] - 0.5 * (1 - 1 / factor),
x_range[1] + 0.5 * (1 + 1 / factor), 1. / factor)
y = np.arange(y_range[0] - 0.5 * (1 - 1 / factor),
y_range[1] + 0.5 * (1 + 1 / factor), 1. / factor)
x_grid, y_grid = np.meshgrid(x, y)
values = model(x_grid, y_grid)
# Reshape and compute mean
shape = (y.size // factor, factor, x.size // factor, factor)
values = np.reshape(values, shape)
return values.mean(axis=3).mean(axis=1)[:-1, :-1]
def discretize_integrate_1D(model, x_range):
"""
Discretize model by integrating numerically the model over the bin.
"""
from scipy.integrate import quad
# Set up grid
x = np.arange(x_range[0] - 0.5, x_range[1] + 0.5)
values = np.array([])
# Integrate over all bins
for i in range(x.size - 1):
values = np.append(values, quad(model, x[i], x[i + 1])[0])
return values
def discretize_integrate_2D(model, x_range, y_range):
"""
Discretize model by integrating the model over the pixel.
"""
from scipy.integrate import dblquad
# Set up grid
x = np.arange(x_range[0] - 0.5, x_range[1] + 0.5)
y = np.arange(y_range[0] - 0.5, y_range[1] + 0.5)
values = np.empty((y.size - 1, x.size - 1))
# Integrate over all pixels
for i in range(x.size - 1):
for j in range(y.size - 1):
values[j, i] = dblquad(model, x[i], x[i + 1],
lambda x: y[j], lambda x: y[j + 1])[0]
return values
|