1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
|
"""
In this module, we define the coordinate representation classes, which are
used to represent low-level cartesian, spherical, cylindrical, and other
coordinates.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import abc
import functools
import operator
from collections import OrderedDict
import numpy as np
import astropy.units as u
from .angles import Angle, Longitude, Latitude
from .distances import Distance
from ..extern import six
from ..utils import ShapedLikeNDArray, classproperty
from ..utils.compat import NUMPY_LT_1_8, NUMPY_LT_1_12
from ..utils.compat.numpy import broadcast_arrays
__all__ = ["BaseRepresentation", "CartesianRepresentation",
"SphericalRepresentation", "UnitSphericalRepresentation",
"PhysicsSphericalRepresentation", "CylindricalRepresentation"]
# Module-level dict mapping representation string alias names to class.
# This is populated by the metaclass init so all representation classes
# get registered automatically.
REPRESENTATION_CLASSES = {}
def _array2string(values, prefix=''):
# Mimic numpy >=1.12 array2string, in which structured arrays are
# typeset taking into account all printoptions.
# TODO: in final numpy 1.12, the scalar case should work as well;
# see https://github.com/numpy/numpy/issues/8172
if NUMPY_LT_1_12:
# Mimic StructureFormat from numpy >=1.12 assuming float-only data.
from numpy.core.arrayprint import FloatFormat
opts = np.get_printoptions()
format_functions = [FloatFormat(np.atleast_1d(values[component]).ravel(),
precision=opts['precision'],
suppress_small=opts['suppress'])
for component in values.dtype.names]
def fmt(x):
return '({})'.format(', '.join(format_function(field)
for field, format_function in
zip(x, format_functions)))
# Before 1.12, structures arrays were set as "numpystr",
# so that is the formmater we need to replace.
formatter = {'numpystr': fmt}
else:
fmt = repr
formatter = {}
return np.array2string(values, formatter=formatter, style=fmt,
separator=', ', prefix=prefix)
# Need to subclass ABCMeta rather than type, so that this meta class can be
# combined with a ShapedLikeNDArray subclass (which is an ABC). Without it:
# "TypeError: metaclass conflict: the metaclass of a derived class must be a
# (non-strict) subclass of the metaclasses of all its bases"
class MetaBaseRepresentation(abc.ABCMeta):
def __init__(cls, name, bases, dct):
super(MetaBaseRepresentation, cls).__init__(name, bases, dct)
if name != 'BaseRepresentation' and 'attr_classes' not in dct:
raise NotImplementedError('Representations must have an '
'"attr_classes" class attribute.')
# Register representation name (except for BaseRepresentation)
if cls.__name__ == 'BaseRepresentation':
return
repr_name = cls.get_name()
if repr_name in REPRESENTATION_CLASSES:
raise ValueError("Representation class {0} already defined".format(repr_name))
REPRESENTATION_CLASSES[repr_name] = cls
@six.add_metaclass(MetaBaseRepresentation)
class BaseRepresentation(ShapedLikeNDArray):
"""
Base Representation object, for representing a point in a 3D coordinate
system.
Notes
-----
All representation classes should subclass this base representation
class. All subclasses should then define a ``to_cartesian`` method and a
``from_cartesian`` class method. By default, transformations are done via
the cartesian system, but classes that want to define a smarter
transformation path can overload the ``represent_as`` method.
Furthermore, all classes must define an ``attr_classes`` attribute, an
`~collections.OrderedDict` which maps component names to the class that
creates them. They can also define a `recommended_units` dictionary, which
maps component names to the units they are best presented to users in. Note
that frame classes may override this with their own preferred units.
"""
recommended_units = {} # subclasses can override
# Ensure multiplication/division with ndarray or Quantity doesn't lead to
# object arrays.
__array_priority__ = 50000
def represent_as(self, other_class):
if other_class == self.__class__:
return self
else:
# The default is to convert via cartesian coordinates
return other_class.from_cartesian(self.to_cartesian())
@classmethod
def from_representation(cls, representation):
return representation.represent_as(cls)
# Should be replaced by abstractclassmethod once we support only Python 3
@abc.abstractmethod
def from_cartesian(self):
raise NotImplementedError()
@abc.abstractmethod
def to_cartesian(self):
raise NotImplementedError()
@property
def components(self):
"""A tuple with the in-order names of the coordinate components"""
return tuple(self.attr_classes)
@classmethod
def get_name(cls):
name = cls.__name__.lower()
if name.endswith('representation'):
name = name[:-14]
return name
def _apply(self, method, *args, **kwargs):
"""Create a new representation with ``method`` applied to the arrays.
In typical usage, the method is any of the shape-changing methods for
`~numpy.ndarray` (``reshape``, ``swapaxes``, etc.), as well as those
picking particular elements (``__getitem__``, ``take``, etc.), which
are all defined in `~astropy.utils.misc.ShapedLikeNDArray`. It will be
applied to the underlying arrays (e.g., ``x``, ``y``, and ``z`` for
`~astropy.coordinates.CartesianRepresentation`), with the results used
to create a new instance.
Internally, it is also used to apply functions to the components
(in particular, `~numpy.broadcast_to`).
Parameters
----------
method : str or callable
If str, it is the name of a method that is applied to the internal
``components``. If callable, the function is applied.
args : tuple
Any positional arguments for ``method``.
kwargs : dict
Any keyword arguments for ``method``.
"""
if callable(method):
apply_method = lambda array: method(array, *args, **kwargs)
else:
apply_method = operator.methodcaller(method, *args, **kwargs)
return self.__class__( *[apply_method(getattr(self, component))
for component in self.components], copy=False)
@property
def shape(self):
"""The shape of the instance and underlying arrays.
Like `~numpy.ndarray.shape`, can be set to a new shape by assigning a
tuple. Note that if different instances share some but not all
underlying data, setting the shape of one instance can make the other
instance unusable. Hence, it is strongly recommended to get new,
reshaped instances with the ``reshape`` method.
Raises
------
AttributeError
If the shape of any of the components cannot be changed without the
arrays being copied. For these cases, use the ``reshape`` method
(which copies any arrays that cannot be reshaped in-place).
"""
return getattr(self, self.components[0]).shape
@shape.setter
def shape(self, shape):
# We keep track of arrays that were already reshaped since we may have
# to return those to their original shape if a later shape-setting
# fails. (This can happen since coordinates are broadcast together.)
reshaped = []
oldshape = self.shape
for component in self.components:
val = getattr(self, component)
if val.size > 1:
try:
val.shape = shape
except AttributeError:
for val2 in reshaped:
val2.shape = oldshape
raise
else:
reshaped.append(val)
@property
def _values(self):
"""Turn the coordinates into a record array with the coordinate values.
The record array fields will have the component names.
"""
coordinates = [getattr(self, c) for c in self.components]
if NUMPY_LT_1_8:
# numpy 1.7 has problems concatenating broadcasted arrays.
coordinates = [(coo.copy() if 0 in coo.strides else coo)
for coo in coordinates]
sh = self.shape + (1,)
dtype = np.dtype([(str(c), coo.dtype)
for c, coo in zip(self.components, coordinates)])
return np.concatenate([coo.reshape(sh).value for coo in coordinates],
axis=-1).view(dtype).squeeze()
@property
def _units(self):
"""Return a dictionary with the units of the coordinate components."""
return dict([(component, getattr(self, component).unit)
for component in self.components])
@property
def _unitstr(self):
units_set = set(self._units.values())
if len(units_set) == 1:
unitstr = units_set.pop().to_string()
else:
unitstr = '({0})'.format(
', '.join([self._units[component].to_string()
for component in self.components]))
return unitstr
def _scale_operation(self, op, *args):
results = []
for component, cls in self.attr_classes.items():
value = getattr(self, component)
if issubclass(cls, Angle):
results.append(value)
else:
results.append(op(value, *args))
# try/except catches anything that cannot initialize the class, such
# as operations that returned NotImplemented or a representation
# instead of a quantity (as would happen for, e.g., rep * rep).
try:
return self.__class__(*results)
except Exception:
return NotImplemented
def __mul__(self, other):
return self._scale_operation(operator.mul, other)
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
return self._scale_operation(operator.truediv, other)
def __div__(self, other):
return self._scale_operation(operator.truediv, other)
def __neg__(self):
return self._scale_operation(operator.neg)
# Follow numpy convention and make an independent copy.
def __pos__(self):
return self.__class__(*(getattr(self, component)
for component in self.components), copy=True)
def _combine_operation(self, op, other, reverse=False):
result = self.to_cartesian()._combine_operation(op, other, reverse)
if result is NotImplemented:
return NotImplemented
else:
return self.from_cartesian(result)
def __add__(self, other):
return self._combine_operation(operator.add, other)
def __radd__(self, other):
return self._combine_operation(operator.add, other, reverse=True)
def __sub__(self, other):
return self._combine_operation(operator.sub, other)
def __rsub__(self, other):
return self._combine_operation(operator.sub, other, reverse=True)
def norm(self):
"""Vector norm.
The norm is the standard Frobenius norm, i.e., the square root of the
sum of the squares of all components with non-angular units.
Returns
-------
norm : `astropy.units.Quantity`
Vector norm, with the same shape as the representation.
"""
return np.sqrt(functools.reduce(
operator.add, (getattr(self, component)**2
for component, cls in self.attr_classes.items()
if not issubclass(cls, Angle))))
def mean(self, *args, **kwargs):
"""Vector mean.
Averaging is done by converting the representation to cartesian, and
taking the mean of the x, y, and z components. The result is converted
back to the same representation as the input.
Refer to `~numpy.mean` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
Returns
-------
mean : representation
Vector mean, in the same representation as that of the input.
"""
return self.from_cartesian(self.to_cartesian().mean(*args, **kwargs))
def sum(self, *args, **kwargs):
"""Vector sum.
Adding is done by converting the representation to cartesian, and
summing the x, y, and z components. The result is converted back to the
same representation as the input.
Refer to `~numpy.sum` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
Returns
-------
sum : representation
Vector sum, in the same representation as that of the input.
"""
return self.from_cartesian(self.to_cartesian().sum(*args, **kwargs))
def dot(self, other):
"""Dot product of two representations.
The calculation is done by converting both ``self`` and ``other``
to `~astropy.coordinates.CartesianRepresentation`.
Parameters
----------
other : `~astropy.coordinates.BaseRepresentation`
The representation to take the dot product with.
Returns
-------
dot_product : `~astropy.units.Quantity`
The sum of the product of the x, y, and z components of the
cartesian representations of ``self`` and ``other``.
"""
return self.to_cartesian().dot(other)
def cross(self, other):
"""Vector cross product of two representations.
The calculation is done by converting both ``self`` and ``other``
to `~astropy.coordinates.CartesianRepresentation`, and converting the
result back to the type of representation of ``self``.
Parameters
----------
other : representation
The representation to take the cross product with.
Returns
-------
cross_product : representation
With vectors perpendicular to both ``self`` and ``other``, in the
same type of representation as ``self``.
"""
return self.from_cartesian(self.to_cartesian().cross(other))
def __str__(self):
return '{0} {1:s}'.format(_array2string(self._values), self._unitstr)
def __repr__(self):
prefixstr = ' '
arrstr = _array2string(self._values, prefix=prefixstr)
unitstr = ('in ' + self._unitstr) if self._unitstr else '[dimensionless]'
return '<{0} ({1}) {2:s}\n{3}{4}>'.format(
self.__class__.__name__, ', '.join(self.components),
unitstr, prefixstr, arrstr)
class CartesianRepresentation(BaseRepresentation):
"""
Representation of points in 3D cartesian coordinates.
Parameters
----------
x, y, z : `~astropy.units.Quantity` or array
The x, y, and z coordinates of the point(s). If ``x``, ``y``, and ``z``
have different shapes, they should be broadcastable. If not quantity,
``unit`` should be set. If only ``x`` is given, it is assumed that it
contains an array with the 3 coordinates are stored along ``xyz_axis``.
unit : `~astropy.units.Unit` or str
If given, the coordinates will be converted to this unit (or taken to
be in this unit if not given.
xyz_axis : int, optional
The axis along which the coordinates are stored when a single array is
provided rather than distinct ``x``, ``y``, and ``z`` (default: 0).
copy : bool, optional
If True (default), arrays will be copied rather than referenced.
"""
attr_classes = OrderedDict([('x', u.Quantity),
('y', u.Quantity),
('z', u.Quantity)])
def __init__(self, x, y=None, z=None, unit=None, xyz_axis=None, copy=True):
if unit is None and not hasattr(x, 'unit'):
raise TypeError('x should have a unit unless an explicit unit '
'is passed in.')
if y is None and z is None:
if xyz_axis is not None and xyz_axis != 0:
x = np.rollaxis(x, xyz_axis, 0)
x, y, z = x
elif xyz_axis is not None:
raise ValueError("xyz_axis should only be set if x, y, and z are "
"in a single array passed in through x, "
"i.e., y and z should not be not given.")
elif (y is None and z is not None) or (y is not None and z is None):
raise ValueError("x, y, and z are required to instantiate {0}"
.format(self.__class__.__name__))
try:
x = self.attr_classes['x'](x, unit=unit, copy=copy)
y = self.attr_classes['y'](y, unit=unit, copy=copy)
z = self.attr_classes['z'](z, unit=unit, copy=copy)
except u.UnitsError:
raise u.UnitsError('x, y, and z should have a unit consistent with '
'{0}'.format(unit))
except:
raise TypeError('x, y, and z should be able to initialize ' +
('a {0}'.format(self.attr_classes['x'].__name__))
if len(set(self.attr_classes.values)) == 1 else
('{0}, {1}, and {2}, resp.'.format(
cls.__name__ for cls in
self.attr_classes.values())))
if not (x.unit.physical_type ==
y.unit.physical_type == z.unit.physical_type):
raise u.UnitsError("x, y, and z should have matching physical types")
try:
x, y, z = broadcast_arrays(x, y, z, subok=True)
except ValueError:
raise ValueError("Input parameters x, y, and z cannot be broadcast")
self._x = x
self._y = y
self._z = z
@property
def x(self):
"""
The x component of the point(s).
"""
return self._x
@property
def y(self):
"""
The y component of the point(s).
"""
return self._y
@property
def z(self):
"""
The z component of the point(s).
"""
return self._z
def get_xyz(self, xyz_axis=0):
"""Return a vector array of the x, y, and z coordinates.
Parameters
----------
xyz_axis : int, optional
The axis in the final array along which the x, y, z components
should be stored (default: 0).
Returns
-------
xyz : `~astropy.units.Quantity`
With dimension 3 along ``xyz_axis``.
"""
# Add new axis in x, y, z so one can concatenate them around it.
# NOTE: just use np.stack once our minimum numpy version is 1.10.
result_ndim = self.ndim + 1
if not -result_ndim <= xyz_axis < result_ndim:
raise IndexError('xyz_axis {0} out of bounds [-{1}, {1})'
.format(xyz_axis, result_ndim))
if xyz_axis < 0:
xyz_axis += result_ndim
# Get x, y, z to the same units (this is very fast for identical units)
# since np.concatenate cannot deal with quantity.
cls = self._x.__class__
x = self._x
y = cls(self._y, x.unit, copy=False)
z = cls(self._z, x.unit, copy=False)
if NUMPY_LT_1_8:
# numpy 1.7 has problems concatenating broadcasted arrays.
x, y, z = [(c.copy() if 0 in c.strides else c) for c in (x, y, z)]
sh = self.shape
sh = sh[:xyz_axis] + (1,) + sh[xyz_axis:]
xyz_value = np.concatenate([c.reshape(sh).value for c in (x, y, z)],
axis=xyz_axis)
return cls(xyz_value, unit=x.unit, copy=False)
xyz = property(get_xyz)
@classmethod
def from_cartesian(cls, other):
return other
def to_cartesian(self):
return self
def transform(self, matrix):
"""
Transform the cartesian coordinates using a 3x3 matrix.
This returns a new representation and does not modify the original one.
Parameters
----------
matrix : `~numpy.ndarray`
A 3x3 transformation matrix, such as a rotation matrix.
Examples
--------
We can start off by creating a cartesian representation object:
>>> from astropy import units as u
>>> from astropy.coordinates import CartesianRepresentation
>>> rep = CartesianRepresentation([1, 2] * u.pc,
... [2, 3] * u.pc,
... [3, 4] * u.pc)
We now create a rotation matrix around the z axis:
>>> from astropy.coordinates.matrix_utilities import rotation_matrix
>>> rotation = rotation_matrix(30 * u.deg, axis='z')
Finally, we can apply this transformation:
>>> rep_new = rep.transform(rotation)
>>> rep_new.xyz # doctest: +FLOAT_CMP
<Quantity [[ 1.8660254 , 3.23205081],
[ 1.23205081, 1.59807621],
[ 3. , 4. ]] pc>
"""
# Avoid doing gratuitous np.array for things that look like arrays.
try:
matrix_shape = matrix.shape
except AttributeError:
matrix = np.array(matrix)
matrix_shape = matrix.shape
if matrix_shape[-2:] != (3, 3):
raise ValueError("tried to do matrix multiplication with an array "
"that doesn't end in 3x3")
# TODO: since this is likely to be a widely used function in coordinate
# transforms, it should be optimized (for example in Cython).
# Get xyz once since it's an expensive operation
oldxyz = self.xyz
# Note that neither dot nor einsum handles Quantity properly, so we use
# the arrays and put the unit back in the end.
if self.isscalar and not matrix_shape[:-2]:
# a fast path for scalar coordinates.
newxyz = matrix.dot(oldxyz.value)
else:
# Matrix multiply all pmat items and coordinates, broadcasting the
# remaining dimensions.
newxyz = np.einsum('...ij,j...->i...', matrix, oldxyz.value)
newxyz = u.Quantity(newxyz, oldxyz.unit, copy=False)
return self.__class__(*newxyz, copy=False)
def _combine_operation(self, op, other, reverse=False):
try:
other_c = other.to_cartesian()
except Exception:
return NotImplemented
first, second = ((self, other_c) if not reverse else
(other_c, self))
return self.__class__(*(op(getattr(first, component),
getattr(second, component))
for component in first.components))
def mean(self, *args, **kwargs):
"""Vector mean.
Returns a new CartesianRepresentation instance with the means of the
x, y, and z components.
Refer to `~numpy.mean` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
"""
return self._apply('mean', *args, **kwargs)
def sum(self, *args, **kwargs):
"""Vector sum.
Returns a new CartesianRepresentation instance with the sums of the
x, y, and z components.
Refer to `~numpy.sum` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
"""
return self._apply('sum', *args, **kwargs)
def dot(self, other):
"""Dot product of two representations.
Parameters
----------
other : representation
If not already cartesian, it is converted.
Returns
-------
dot_product : `~astropy.units.Quantity`
The sum of the product of the x, y, and z components of ``self``
and ``other``.
"""
try:
other_c = other.to_cartesian()
except Exception:
raise TypeError("cannot only take dot product with another "
"representation, not a {0} instance."
.format(type(other)))
return functools.reduce(operator.add,
(getattr(self, component) *
getattr(other_c, component)
for component in self.components))
def cross(self, other):
"""Cross product of two representations.
Parameters
----------
other : representation
If not already cartesian, it is converted.
Returns
-------
cross_product : `~astropy.coordinates.CartesianRepresentation`
With vectors perpendicular to both ``self`` and ``other``.
"""
try:
other_c = other.to_cartesian()
except Exception:
raise TypeError("cannot only take cross product with another "
"representation, not a {0} instance."
.format(type(other)))
return self.__class__(self.y * other_c.z - self.z * other_c.y,
self.z * other_c.x - self.x * other_c.z,
self.x * other_c.y - self.y * other_c.x)
class UnitSphericalRepresentation(BaseRepresentation):
"""
Representation of points on a unit sphere.
Parameters
----------
lon, lat : `~astropy.units.Quantity` or str
The longitude and latitude of the point(s), in angular units. The
latitude should be between -90 and 90 degrees, and the longitude will
be wrapped to an angle between 0 and 360 degrees. These can also be
instances of `~astropy.coordinates.Angle`,
`~astropy.coordinates.Longitude`, or `~astropy.coordinates.Latitude`.
copy : bool, optional
If True arrays will be copied rather than referenced.
"""
attr_classes = OrderedDict([('lon', Longitude),
('lat', Latitude)])
recommended_units = {'lon': u.deg, 'lat': u.deg}
@classproperty
def _dimensional_representation(cls):
return SphericalRepresentation
def __init__(self, lon, lat, copy=True):
if not isinstance(lon, u.Quantity) or isinstance(lon, Latitude):
raise TypeError('lon should be a Quantity, Angle, or Longitude')
if not isinstance(lat, u.Quantity) or isinstance(lat, Longitude):
raise TypeError('lat should be a Quantity, Angle, or Latitude')
# Let the Longitude and Latitude classes deal with e.g. parsing
lon = self.attr_classes['lon'](lon, copy=copy)
lat = self.attr_classes['lat'](lat, copy=copy)
try:
lon, lat = broadcast_arrays(lon, lat, subok=True)
except ValueError:
raise ValueError("Input parameters lon and lat cannot be broadcast")
self._lon = lon
self._lat = lat
@property
def lon(self):
"""
The longitude of the point(s).
"""
return self._lon
@property
def lat(self):
"""
The latitude of the point(s).
"""
return self._lat
def to_cartesian(self):
"""
Converts spherical polar coordinates to 3D rectangular cartesian
coordinates.
"""
x = u.one * np.cos(self.lat) * np.cos(self.lon)
y = u.one * np.cos(self.lat) * np.sin(self.lon)
z = u.one * np.sin(self.lat)
return CartesianRepresentation(x=x, y=y, z=z, copy=False)
@classmethod
def from_cartesian(cls, cart):
"""
Converts 3D rectangular cartesian coordinates to spherical polar
coordinates.
"""
s = np.hypot(cart.x, cart.y)
lon = np.arctan2(cart.y, cart.x)
lat = np.arctan2(cart.z, s)
return cls(lon=lon, lat=lat, copy=False)
def represent_as(self, other_class):
# Take a short cut if the other class is a spherical representation
if issubclass(other_class, PhysicsSphericalRepresentation):
return other_class(phi=self.lon, theta=90 * u.deg - self.lat, r=1.0,
copy=False)
elif issubclass(other_class, SphericalRepresentation):
return other_class(lon=self.lon, lat=self.lat, distance=1.0,
copy=False)
else:
return super(UnitSphericalRepresentation,
self).represent_as(other_class)
def __mul__(self, other):
return self._dimensional_representation(lon=self.lon, lat=self.lat,
distance=1. * other)
def __truediv__(self, other):
return self._dimensional_representation(lon=self.lon, lat=self.lat,
distance=1. / other)
def __neg__(self):
return self.__class__(self.lon + 180. * u.deg, -self.lat)
def norm(self):
"""Vector norm.
The norm is the standard Frobenius norm, i.e., the square root of the
sum of the squares of all components with non-angular units, which is
always unity for vectors on the unit sphere.
Returns
-------
norm : `~astropy.units.Quantity`
Dimensionless ones, with the same shape as the representation.
"""
return u.Quantity(np.ones(self.shape), u.dimensionless_unscaled,
copy=False)
def _combine_operation(self, op, other, reverse=False):
result = self.to_cartesian()._combine_operation(op, other, reverse)
if result is NotImplemented:
return NotImplemented
else:
return self._dimensional_representation.from_cartesian(result)
def mean(self, *args, **kwargs):
"""Vector mean.
The representation is converted to cartesian, the means of the x, y,
and z components are calculated, and the result is converted to a
`~astropy.coordinates.SphericalRepresentation`.
Refer to `~numpy.mean` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
"""
return self._dimensional_representation.from_cartesian(
self.to_cartesian().mean(*args, **kwargs))
def sum(self, *args, **kwargs):
"""Vector sum.
The representation is converted to cartesian, the sums of the x, y,
and z components are calculated, and the result is converted to a
`~astropy.coordinates.SphericalRepresentation`.
Refer to `~numpy.sum` for full documentation of the arguments, noting
that ``axis`` is the entry in the ``shape`` of the representation, and
that the ``out`` argument cannot be used.
"""
return self._dimensional_representation.from_cartesian(
self.to_cartesian().sum(*args, **kwargs))
def cross(self, other):
"""Cross product of two representations.
The calculation is done by converting both ``self`` and ``other``
to `~astropy.coordinates.CartesianRepresentation`, and converting the
result back to `~astropy.coordinates.SphericalRepresentation`.
Parameters
----------
other : representation
The representation to take the cross product with.
Returns
-------
cross_product : `~astropy.coordinates.SphericalRepresentation`
With vectors perpendicular to both ``self`` and ``other``.
"""
return self._dimensional_representation.from_cartesian(
self.to_cartesian().cross(other))
class SphericalRepresentation(BaseRepresentation):
"""
Representation of points in 3D spherical coordinates.
Parameters
----------
lon, lat : `~astropy.units.Quantity`
The longitude and latitude of the point(s), in angular units. The
latitude should be between -90 and 90 degrees, and the longitude will
be wrapped to an angle between 0 and 360 degrees. These can also be
instances of `~astropy.coordinates.Angle`,
`~astropy.coordinates.Longitude`, or `~astropy.coordinates.Latitude`.
distance : `~astropy.units.Quantity`
The distance to the point(s). If the distance is a length, it is
passed to the :class:`~astropy.coordinates.Distance` class, otherwise
it is passed to the :class:`~astropy.units.Quantity` class.
copy : bool, optional
If True arrays will be copied rather than referenced.
"""
attr_classes = OrderedDict([('lon', Longitude),
('lat', Latitude),
('distance', u.Quantity)])
recommended_units = {'lon': u.deg, 'lat': u.deg}
_unit_representation = UnitSphericalRepresentation
def __init__(self, lon, lat, distance, copy=True):
if not isinstance(lon, u.Quantity) or isinstance(lon, Latitude):
raise TypeError('lon should be a Quantity, Angle, or Longitude')
if not isinstance(lat, u.Quantity) or isinstance(lat, Longitude):
raise TypeError('lat should be a Quantity, Angle, or Latitude')
# Let the Longitude and Latitude classes deal with e.g. parsing
lon = self.attr_classes['lon'](lon, copy=copy)
lat = self.attr_classes['lat'](lat, copy=copy)
distance = self.attr_classes['distance'](distance, copy=copy)
if distance.unit.physical_type == 'length':
distance = distance.view(Distance)
try:
lon, lat, distance = broadcast_arrays(lon, lat, distance,
subok=True)
except ValueError:
raise ValueError("Input parameters lon, lat, and distance cannot be broadcast")
self._lon = lon
self._lat = lat
self._distance = distance
@property
def lon(self):
"""
The longitude of the point(s).
"""
return self._lon
@property
def lat(self):
"""
The latitude of the point(s).
"""
return self._lat
@property
def distance(self):
"""
The distance from the origin to the point(s).
"""
return self._distance
def represent_as(self, other_class):
# Take a short cut if the other class is a spherical representation
if issubclass(other_class, PhysicsSphericalRepresentation):
return other_class(phi=self.lon, theta=90 * u.deg - self.lat,
r=self.distance, copy=False)
elif issubclass(other_class, UnitSphericalRepresentation):
return other_class(lon=self.lon, lat=self.lat, copy=False)
else:
return super(SphericalRepresentation,
self).represent_as(other_class)
def to_cartesian(self):
"""
Converts spherical polar coordinates to 3D rectangular cartesian
coordinates.
"""
# We need to convert Distance to Quantity to allow negative values.
if isinstance(self.distance, Distance):
d = self.distance.view(u.Quantity)
else:
d = self.distance
x = d * np.cos(self.lat) * np.cos(self.lon)
y = d * np.cos(self.lat) * np.sin(self.lon)
z = d * np.sin(self.lat)
return CartesianRepresentation(x=x, y=y, z=z, copy=False)
@classmethod
def from_cartesian(cls, cart):
"""
Converts 3D rectangular cartesian coordinates to spherical polar
coordinates.
"""
s = np.hypot(cart.x, cart.y)
r = np.hypot(s, cart.z)
lon = np.arctan2(cart.y, cart.x)
lat = np.arctan2(cart.z, s)
return cls(lon=lon, lat=lat, distance=r, copy=False)
def norm(self):
"""Vector norm.
The norm is the standard Frobenius norm, i.e., the square root of the
sum of the squares of all components with non-angular units. For
spherical coordinates, this is just the absolute value of the distance.
Returns
-------
norm : `astropy.units.Quantity`
Vector norm, with the same shape as the representation.
"""
return np.abs(self.distance)
class PhysicsSphericalRepresentation(BaseRepresentation):
"""
Representation of points in 3D spherical coordinates (using the physics
convention of using ``phi`` and ``theta`` for azimuth and inclination
from the pole).
Parameters
----------
phi, theta : `~astropy.units.Quantity` or str
The azimuth and inclination of the point(s), in angular units. The
inclination should be between 0 and 180 degrees, and the azimuth will
be wrapped to an angle between 0 and 360 degrees. These can also be
instances of `~astropy.coordinates.Angle`. If ``copy`` is False, `phi`
will be changed inplace if it is not between 0 and 360 degrees.
r : `~astropy.units.Quantity`
The distance to the point(s). If the distance is a length, it is
passed to the :class:`~astropy.coordinates.Distance` class, otherwise
it is passed to the :class:`~astropy.units.Quantity` class.
copy : bool, optional
If True arrays will be copied rather than referenced.
"""
attr_classes = OrderedDict([('phi', Angle),
('theta', Angle),
('r', u.Quantity)])
recommended_units = {'phi': u.deg, 'theta': u.deg}
def __init__(self, phi, theta, r, copy=True):
if not isinstance(phi, u.Quantity) or isinstance(phi, Latitude):
raise TypeError('phi should be a Quantity or Angle')
if not isinstance(theta, u.Quantity) or isinstance(theta, Longitude):
raise TypeError('phi should be a Quantity or Angle')
# Let the Longitude and Latitude classes deal with e.g. parsing
phi = self.attr_classes['phi'](phi, copy=copy)
theta = self.attr_classes['theta'](theta, copy=copy)
# Wrap/validate phi/theta
if copy:
phi = phi.wrap_at(360 * u.deg)
else:
# necessary because the above version of `wrap_at` has to be a copy
phi.wrap_at(360 * u.deg, inplace=True)
if np.any(theta.value < 0.) or np.any(theta.value > 180.):
raise ValueError('Inclination angle(s) must be within 0 deg <= angle <= 180 deg, '
'got {0}'.format(theta.to(u.degree)))
r = self.attr_classes['r'](r, copy=copy)
if r.unit.physical_type == 'length':
r = r.view(Distance)
try:
phi, theta, r = broadcast_arrays(phi, theta, r, subok=True)
except ValueError:
raise ValueError("Input parameters phi, theta, and r cannot be broadcast")
self._phi = phi
self._theta = theta
self._distance = r
@property
def phi(self):
"""
The azimuth of the point(s).
"""
return self._phi
@property
def theta(self):
"""
The elevation of the point(s).
"""
return self._theta
@property
def r(self):
"""
The distance from the origin to the point(s).
"""
return self._distance
def represent_as(self, other_class):
# Take a short cut if the other class is a spherical representation
if issubclass(other_class, SphericalRepresentation):
return other_class(lon=self.phi, lat=90 * u.deg - self.theta,
distance=self.r)
elif issubclass(other_class, UnitSphericalRepresentation):
return other_class(lon=self.phi, lat=90 * u.deg - self.theta)
else:
return super(PhysicsSphericalRepresentation, self).represent_as(other_class)
def to_cartesian(self):
"""
Converts spherical polar coordinates to 3D rectangular cartesian
coordinates.
"""
# We need to convert Distance to Quantity to allow negative values.
if isinstance(self.r, Distance):
d = self.r.view(u.Quantity)
else:
d = self.r
x = d * np.sin(self.theta) * np.cos(self.phi)
y = d * np.sin(self.theta) * np.sin(self.phi)
z = d * np.cos(self.theta)
return CartesianRepresentation(x=x, y=y, z=z, copy=False)
@classmethod
def from_cartesian(cls, cart):
"""
Converts 3D rectangular cartesian coordinates to spherical polar
coordinates.
"""
s = np.hypot(cart.x, cart.y)
r = np.hypot(s, cart.z)
phi = np.arctan2(cart.y, cart.x)
theta = np.arctan2(s, cart.z)
return cls(phi=phi, theta=theta, r=r, copy=False)
def norm(self):
"""Vector norm.
The norm is the standard Frobenius norm, i.e., the square root of the
sum of the squares of all components with non-angular units. For
spherical coordinates, this is just the absolute value of the radius.
Returns
-------
norm : `astropy.units.Quantity`
Vector norm, with the same shape as the representation.
"""
return np.abs(self.r)
class CylindricalRepresentation(BaseRepresentation):
"""
Representation of points in 3D cylindrical coordinates.
Parameters
----------
rho : `~astropy.units.Quantity`
The distance from the z axis to the point(s).
phi : `~astropy.units.Quantity`
The azimuth of the point(s), in angular units, which will be wrapped
to an angle between 0 and 360 degrees. This can also be instances of
`~astropy.coordinates.Angle`,
z : `~astropy.units.Quantity`
The z coordinate(s) of the point(s)
copy : bool, optional
If True arrays will be copied rather than referenced.
"""
attr_classes = OrderedDict([('rho', u.Quantity),
('phi', Angle),
('z', u.Quantity)])
recommended_units = {'phi': u.deg}
def __init__(self, rho, phi, z, copy=True):
if not isinstance(phi, u.Quantity) or isinstance(phi, Latitude):
raise TypeError('phi should be a Quantity or Angle')
rho = self.attr_classes['rho'](rho, copy=copy)
phi = self.attr_classes['phi'](phi, copy=copy)
z = self.attr_classes['z'](z, copy=copy)
if not (rho.unit.physical_type == z.unit.physical_type):
raise u.UnitsError("rho and z should have matching physical types")
try:
rho, phi, z = broadcast_arrays(rho, phi, z, subok=True)
except ValueError:
raise ValueError("Input parameters rho, phi, and z cannot be broadcast")
self._rho = rho
self._phi = phi
self._z = z
@property
def rho(self):
"""
The distance of the point(s) from the z-axis.
"""
return self._rho
@property
def phi(self):
"""
The azimuth of the point(s).
"""
return self._phi
@property
def z(self):
"""
The height of the point(s).
"""
return self._z
@classmethod
def from_cartesian(cls, cart):
"""
Converts 3D rectangular cartesian coordinates to cylindrical polar
coordinates.
"""
rho = np.hypot(cart.x, cart.y)
phi = np.arctan2(cart.y, cart.x)
z = cart.z
return cls(rho=rho, phi=phi, z=z, copy=False)
def to_cartesian(self):
"""
Converts cylindrical polar coordinates to 3D rectangular cartesian
coordinates.
"""
x = self.rho * np.cos(self.phi)
y = self.rho * np.sin(self.phi)
z = self.z
return CartesianRepresentation(x=x, y=y, z=z, copy=False)
|