1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from ... import units as u
from ..distances import Distance
from ..builtin_frames import (ICRS, FK5, FK4, FK4NoETerms, Galactic,
Supergalactic, Galactocentric, HCRS, GCRS)
from .. import SkyCoord
from ...tests.helper import (pytest, quantity_allclose as allclose,
assert_quantity_allclose as assert_allclose)
from .. import EarthLocation, CartesianRepresentation
from ...time import Time
from ...extern.six.moves import range
# used below in the next parametrized test
m31_sys = [ICRS, FK5, FK4, Galactic]
m31_coo = [(10.6847929, 41.2690650), (10.6847929, 41.2690650), (10.0004738, 40.9952444), (121.1744050, -21.5729360)]
m31_dist = Distance(770, u.kpc)
convert_precision = 1 * u.arcsec
roundtrip_precision = 1e-4 * u.degree
dist_precision = 1e-9 * u.kpc
m31_params = []
for i in range(len(m31_sys)):
for j in range(len(m31_sys)):
if i < j:
m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j]))
@pytest.mark.parametrize(('fromsys', 'tosys', 'fromcoo', 'tocoo'), m31_params)
def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo):
"""
This tests a variety of coordinate conversions for the Chandra point-source
catalog location of M31 from NED.
"""
coo1 = fromsys(ra=fromcoo[0]*u.deg, dec=fromcoo[1]*u.deg, distance=m31_dist)
coo2 = coo1.transform_to(tosys)
if tosys is FK4:
coo2_prec = coo2.transform_to(FK4(equinox=Time('B1950', scale='utc')))
assert (coo2_prec.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec
assert (coo2_prec.spherical.lat - tocoo[1]*u.deg) < convert_precision
else:
assert (coo2.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec
assert (coo2.spherical.lat - tocoo[1]*u.deg) < convert_precision
assert coo1.distance.unit == u.kpc
assert coo2.distance.unit == u.kpc
assert m31_dist.unit == u.kpc
assert (coo2.distance - m31_dist) < dist_precision
# check round-tripping
coo1_2 = coo2.transform_to(fromsys)
assert (coo1_2.spherical.lon - fromcoo[0]*u.deg) < roundtrip_precision
assert (coo1_2.spherical.lat - fromcoo[1]*u.deg) < roundtrip_precision
assert (coo1_2.distance - m31_dist) < dist_precision
def test_precession():
"""
Ensures that FK4 and FK5 coordinates precess their equinoxes
"""
j2000 = Time('J2000', scale='utc')
b1950 = Time('B1950', scale='utc')
j1975 = Time('J1975', scale='utc')
b1975 = Time('B1975', scale='utc')
fk4 = FK4(ra=1*u.radian, dec=0.5*u.radian)
assert fk4.equinox.byear == b1950.byear
fk4_2 = fk4.transform_to(FK4(equinox=b1975))
assert fk4_2.equinox.byear == b1975.byear
fk5 = FK5(ra=1*u.radian, dec=0.5*u.radian)
assert fk5.equinox.jyear == j2000.jyear
fk5_2 = fk5.transform_to(FK4(equinox=j1975))
assert fk5_2.equinox.jyear == j1975.jyear
def test_fk5_galactic():
"""
Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic.
"""
fk5 = FK5(ra=1*u.deg, dec=2*u.deg)
direct = fk5.transform_to(Galactic)
indirect = fk5.transform_to(FK4).transform_to(Galactic)
assert direct.separation(indirect).degree < 1.e-10
direct = fk5.transform_to(Galactic)
indirect = fk5.transform_to(FK4NoETerms).transform_to(Galactic)
assert direct.separation(indirect).degree < 1.e-10
def test_galactocentric():
# when z_sun=0, transformation should be very similar to Galactic
icrs_coord = ICRS(ra=np.linspace(0, 360, 10)*u.deg,
dec=np.linspace(-90, 90, 10)*u.deg,
distance=1.*u.kpc)
g_xyz = icrs_coord.transform_to(Galactic).cartesian.xyz
gc_xyz = icrs_coord.transform_to(Galactocentric(z_sun=0*u.kpc)).cartesian.xyz
diff = np.abs(g_xyz - gc_xyz)
assert allclose(diff[0], 8.3*u.kpc, atol=1E-5*u.kpc)
assert allclose(diff[1:], 0*u.kpc, atol=1E-5*u.kpc)
# generate some test coordinates
g = Galactic(l=[0, 0, 45, 315]*u.deg, b=[-45, 45, 0, 0]*u.deg,
distance=[np.sqrt(2)]*4*u.kpc)
xyz = g.transform_to(Galactocentric(galcen_distance=1.*u.kpc, z_sun=0.*u.pc)).cartesian.xyz
true_xyz = np.array([[0, 0, -1.], [0, 0, 1], [0, 1, 0], [0, -1, 0]]).T*u.kpc
assert allclose(xyz.to(u.kpc), true_xyz.to(u.kpc), atol=1E-5*u.kpc)
# check that ND arrays work
# from Galactocentric to Galactic
x = np.linspace(-10., 10., 100) * u.kpc
y = np.linspace(-10., 10., 100) * u.kpc
z = np.zeros_like(x)
g1 = Galactocentric(x=x, y=y, z=z)
g2 = Galactocentric(x=x.reshape(100, 1, 1), y=y.reshape(100, 1, 1),
z=z.reshape(100, 1, 1))
g1t = g1.transform_to(Galactic)
g2t = g2.transform_to(Galactic)
assert_allclose(g1t.cartesian.xyz, g2t.cartesian.xyz[:, :, 0, 0])
# from Galactic to Galactocentric
l = np.linspace(15, 30., 100) * u.deg
b = np.linspace(-10., 10., 100) * u.deg
d = np.ones_like(l.value) * u.kpc
g1 = Galactic(l=l, b=b, distance=d)
g2 = Galactic(l=l.reshape(100, 1, 1), b=b.reshape(100, 1, 1),
distance=d.reshape(100, 1, 1))
g1t = g1.transform_to(Galactocentric)
g2t = g2.transform_to(Galactocentric)
np.testing.assert_almost_equal(g1t.cartesian.xyz.value,
g2t.cartesian.xyz.value[:, :, 0, 0])
def test_supergalactic():
"""
Check Galactic<->Supergalactic and Galactic<->ICRS conversion.
"""
# Check supergalactic North pole.
npole = Galactic(l=47.37*u.degree, b=+6.32*u.degree)
assert allclose(npole.transform_to(Supergalactic).sgb.deg, +90, atol=1e-9)
# Check the origin of supergalactic longitude.
lon0 = Supergalactic(sgl=0*u.degree, sgb=0*u.degree)
lon0_gal = lon0.transform_to(Galactic)
assert allclose(lon0_gal.l.deg, 137.37, atol=1e-9)
assert allclose(lon0_gal.b.deg, 0, atol=1e-9)
# Test Galactic<->ICRS with some positions that appear in Foley et al. 2008
# (http://adsabs.harvard.edu/abs/2008A%26A...484..143F)
# GRB 021219
supergalactic = Supergalactic(sgl=29.91*u.degree, sgb=+73.72*u.degree)
icrs = SkyCoord('18h50m27s +31d57m17s')
assert supergalactic.separation(icrs) < 0.005 * u.degree
# GRB 030320
supergalactic = Supergalactic(sgl=-174.44*u.degree, sgb=+46.17*u.degree)
icrs = SkyCoord('17h51m36s -25d18m52s')
assert supergalactic.separation(icrs) < 0.005 * u.degree
class TestHCRS():
"""
Check HCRS<->ICRS coordinate conversions.
Uses ICRS Solar positions predicted by get_body_barycentric; with `t1` and
`tarr` as defined below, the ICRS Solar positions were predicted using, e.g.
coord.ICRS(coord.get_body_barycentric(tarr, 'sun')).
"""
def setup(self):
self.t1 = Time("2013-02-02T23:00")
self.t2 = Time("2013-08-02T23:00")
self.tarr = Time(["2013-02-02T23:00", "2013-08-02T23:00"])
self.sun_icrs_scalar = ICRS(ra=244.52984668*u.deg,
dec=-22.36943723*u.deg,
distance=406615.66347377*u.km)
# array of positions corresponds to times in `tarr`
self.sun_icrs_arr = ICRS(ra=[244.52989062, 271.40976248]*u.deg,
dec=[-22.36943605, -25.07431079]*u.deg,
distance=[406615.66347377, 375484.13558956]*u.km)
# corresponding HCRS positions
self.sun_hcrs_t1 = HCRS(CartesianRepresentation([0.0, 0.0, 0.0] * u.km),
obstime=self.t1)
twod_rep = CartesianRepresentation([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] * u.km)
self.sun_hcrs_tarr = HCRS(twod_rep, obstime=self.tarr)
self.tolerance = 5*u.km
def test_from_hcrs(self):
# test scalar transform
transformed = self.sun_hcrs_t1.transform_to(ICRS())
separation = transformed.separation_3d(self.sun_icrs_scalar)
assert_allclose(separation, 0*u.km, atol=self.tolerance)
# test non-scalar positions and times
transformed = self.sun_hcrs_tarr.transform_to(ICRS())
separation = transformed.separation_3d(self.sun_icrs_arr)
assert_allclose(separation, 0*u.km, atol=self.tolerance)
def test_from_icrs(self):
# scalar positions
transformed = self.sun_icrs_scalar.transform_to(HCRS(obstime=self.t1))
separation = transformed.separation_3d(self.sun_hcrs_t1)
assert_allclose(separation, 0*u.km, atol=self.tolerance)
# nonscalar positions
transformed = self.sun_icrs_arr.transform_to(HCRS(obstime=self.tarr))
separation = transformed.separation_3d(self.sun_hcrs_tarr)
assert_allclose(separation, 0*u.km, atol=self.tolerance)
class TestHelioBaryCentric():
"""
Check GCRS<->Heliocentric and Barycentric coordinate conversions.
Uses the WHT observing site (information grabbed from data/sites.json).
"""
def setup(self):
wht = EarthLocation(342.12*u.deg, 28.758333333333333*u.deg, 2327*u.m)
self.obstime = Time("2013-02-02T23:00")
self.wht_itrs = wht.get_itrs(obstime=self.obstime)
def test_heliocentric(self):
gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime))
helio = gcrs.transform_to(HCRS(obstime=self.obstime))
# Check it doesn't change from previous times.
previous = [-1.02597256e+11, 9.71725820e+10, 4.21268419e+10] * u.m
assert_allclose(helio.cartesian.xyz, previous)
# And that it agrees with SLALIB to within 14km
helio_slalib = [-0.685820296, 0.6495585893, 0.2816005464] * u.au
assert np.sqrt(((helio.cartesian.xyz -
helio_slalib)**2).sum()) < 14. * u.km
def test_barycentric(self):
gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime))
bary = gcrs.transform_to(ICRS())
previous = [-1.02758958e+11, 9.68331109e+10, 4.19720938e+10] * u.m
assert_allclose(bary.cartesian.xyz, previous)
# And that it agrees with SLALIB answer to within 14km
bary_slalib = [-0.6869012079, 0.6472893646, 0.2805661191] * u.au
assert np.sqrt(((bary.cartesian.xyz -
bary_slalib)**2).sum()) < 14. * u.km
|