1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Accuracy tests for GCRS coordinate transformations, primarily to/from AltAz.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from ... import units as u
from ...tests.helper import (pytest, remote_data,
quantity_allclose as allclose,
assert_quantity_allclose as assert_allclose)
from ...time import Time
from .. import (EarthLocation, get_sun, ICRS, GCRS, CIRS, ITRS, AltAz,
PrecessedGeocentric, CartesianRepresentation, SkyCoord,
SphericalRepresentation, UnitSphericalRepresentation,
HCRS, HeliocentricTrueEcliptic)
from ..._erfa import epv00
from .utils import randomly_sample_sphere
from ..builtin_frames.utils import get_jd12
from .. import solar_system_ephemeris
try:
import jplephem # pylint: disable=W0611
except ImportError:
HAS_JPLEPHEM = False
else:
HAS_JPLEPHEM = True
def test_icrs_cirs():
"""
Check a few cases of ICRS<->CIRS for consistency.
Also includes the CIRS<->CIRS transforms at different times, as those go
through ICRS
"""
ra, dec, dist = randomly_sample_sphere(200)
inod = ICRS(ra=ra, dec=dec)
iwd = ICRS(ra=ra, dec=dec, distance=dist*u.pc)
cframe1 = CIRS()
cirsnod = inod.transform_to(cframe1) # uses the default time
# first do a round-tripping test
inod2 = cirsnod.transform_to(ICRS)
assert_allclose(inod.ra, inod2.ra)
assert_allclose(inod.dec, inod2.dec)
# now check that a different time yields different answers
cframe2 = CIRS(obstime=Time('J2005', scale='utc'))
cirsnod2 = inod.transform_to(cframe2)
assert not allclose(cirsnod.ra, cirsnod2.ra, rtol=1e-8)
assert not allclose(cirsnod.dec, cirsnod2.dec, rtol=1e-8)
# parallax effects should be included, so with and w/o distance should be different
cirswd = iwd.transform_to(cframe1)
assert not allclose(cirswd.ra, cirsnod.ra, rtol=1e-8)
assert not allclose(cirswd.dec, cirsnod.dec, rtol=1e-8)
# and the distance should transform at least somehow
assert not allclose(cirswd.distance, iwd.distance, rtol=1e-8)
# now check that the cirs self-transform works as expected
cirsnod3 = cirsnod.transform_to(cframe1) # should be a no-op
assert_allclose(cirsnod.ra, cirsnod3.ra)
assert_allclose(cirsnod.dec, cirsnod3.dec)
cirsnod4 = cirsnod.transform_to(cframe2) # should be different
assert not allclose(cirsnod4.ra, cirsnod.ra, rtol=1e-8)
assert not allclose(cirsnod4.dec, cirsnod.dec, rtol=1e-8)
cirsnod5 = cirsnod4.transform_to(cframe1) # should be back to the same
assert_allclose(cirsnod.ra, cirsnod5.ra)
assert_allclose(cirsnod.dec, cirsnod5.dec)
ra, dec, dist = randomly_sample_sphere(200)
icrs_coords = [ICRS(ra=ra, dec=dec), ICRS(ra=ra, dec=dec, distance=dist*u.pc)]
gcrs_frames = [GCRS(), GCRS(obstime=Time('J2005', scale='utc'))]
@pytest.mark.parametrize('icoo', icrs_coords)
def test_icrs_gcrs(icoo):
"""
Check ICRS<->GCRS for consistency
"""
gcrscoo = icoo.transform_to(gcrs_frames[0]) # uses the default time
# first do a round-tripping test
icoo2 = gcrscoo.transform_to(ICRS)
assert_allclose(icoo.distance, icoo2.distance)
assert_allclose(icoo.ra, icoo2.ra)
assert_allclose(icoo.dec, icoo2.dec)
assert isinstance(icoo2.data, icoo.data.__class__)
# now check that a different time yields different answers
gcrscoo2 = icoo.transform_to(gcrs_frames[1])
assert not allclose(gcrscoo.ra, gcrscoo2.ra, rtol=1e-8, atol=1e-10*u.deg)
assert not allclose(gcrscoo.dec, gcrscoo2.dec, rtol=1e-8, atol=1e-10*u.deg)
# now check that the cirs self-transform works as expected
gcrscoo3 = gcrscoo.transform_to(gcrs_frames[0]) # should be a no-op
assert_allclose(gcrscoo.ra, gcrscoo3.ra)
assert_allclose(gcrscoo.dec, gcrscoo3.dec)
gcrscoo4 = gcrscoo.transform_to(gcrs_frames[1]) # should be different
assert not allclose(gcrscoo4.ra, gcrscoo.ra, rtol=1e-8, atol=1e-10*u.deg)
assert not allclose(gcrscoo4.dec, gcrscoo.dec, rtol=1e-8, atol=1e-10*u.deg)
gcrscoo5 = gcrscoo4.transform_to(gcrs_frames[0]) # should be back to the same
assert_allclose(gcrscoo.ra, gcrscoo5.ra, rtol=1e-8, atol=1e-10*u.deg)
assert_allclose(gcrscoo.dec, gcrscoo5.dec, rtol=1e-8, atol=1e-10*u.deg)
# also make sure that a GCRS with a different geoloc/geovel gets a different answer
# roughly a moon-like frame
gframe3 = GCRS(obsgeoloc=[385000., 0, 0]*u.km, obsgeovel=[1, 0, 0]*u.km/u.s)
gcrscoo6 = icoo.transform_to(gframe3) # should be different
assert not allclose(gcrscoo.ra, gcrscoo6.ra, rtol=1e-8, atol=1e-10*u.deg)
assert not allclose(gcrscoo.dec, gcrscoo6.dec, rtol=1e-8, atol=1e-10*u.deg)
icooviag3 = gcrscoo6.transform_to(ICRS) # and now back to the original
assert_allclose(icoo.ra, icooviag3.ra)
assert_allclose(icoo.dec, icooviag3.dec)
@pytest.mark.parametrize('gframe', gcrs_frames)
def test_icrs_gcrs_dist_diff(gframe):
"""
Check that with and without distance give different ICRS<->GCRS answers
"""
gcrsnod = icrs_coords[0].transform_to(gframe)
gcrswd = icrs_coords[1].transform_to(gframe)
# parallax effects should be included, so with and w/o distance should be different
assert not allclose(gcrswd.ra, gcrsnod.ra, rtol=1e-8, atol=1e-10*u.deg)
assert not allclose(gcrswd.dec, gcrsnod.dec, rtol=1e-8, atol=1e-10*u.deg)
# and the distance should transform at least somehow
assert not allclose(gcrswd.distance, icrs_coords[1].distance, rtol=1e-8,
atol=1e-10*u.pc)
def test_cirs_to_altaz():
"""
Check the basic CIRS<->AltAz transforms. More thorough checks implicitly
happen in `test_iau_fullstack`
"""
from .. import EarthLocation
ra, dec, dist = randomly_sample_sphere(200)
cirs = CIRS(ra=ra, dec=dec, obstime='J2000')
crepr = SphericalRepresentation(lon=ra, lat=dec, distance=dist)
cirscart = CIRS(crepr, obstime=cirs.obstime, representation=CartesianRepresentation)
loc = EarthLocation(lat=0*u.deg, lon=0*u.deg, height=0*u.m)
altazframe = AltAz(location=loc, obstime=Time('J2005'))
cirs2 = cirs.transform_to(altazframe).transform_to(cirs)
cirs3 = cirscart.transform_to(altazframe).transform_to(cirs)
# check round-tripping
assert_allclose(cirs.ra, cirs2.ra)
assert_allclose(cirs.dec, cirs2.dec)
assert_allclose(cirs.ra, cirs3.ra)
assert_allclose(cirs.dec, cirs3.dec)
def test_gcrs_itrs():
"""
Check basic GCRS<->ITRS transforms for round-tripping.
"""
ra, dec, _ = randomly_sample_sphere(200)
gcrs = GCRS(ra=ra, dec=dec, obstime='J2000')
gcrs6 = GCRS(ra=ra, dec=dec, obstime='J2006')
gcrs2 = gcrs.transform_to(ITRS).transform_to(gcrs)
gcrs6_2 = gcrs6.transform_to(ITRS).transform_to(gcrs)
assert_allclose(gcrs.ra, gcrs2.ra)
assert_allclose(gcrs.dec, gcrs2.dec)
assert not allclose(gcrs.ra, gcrs6_2.ra)
assert not allclose(gcrs.dec, gcrs6_2.dec)
# also try with the cartesian representation
gcrsc = gcrs.realize_frame(gcrs.data)
gcrsc.representation = CartesianRepresentation
gcrsc2 = gcrsc.transform_to(ITRS).transform_to(gcrsc)
assert_allclose(gcrsc.spherical.lon.deg, gcrsc2.ra.deg)
assert_allclose(gcrsc.spherical.lat, gcrsc2.dec)
def test_cirs_itrs():
"""
Check basic CIRS<->ITRS transforms for round-tripping.
"""
ra, dec, _ = randomly_sample_sphere(200)
cirs = CIRS(ra=ra, dec=dec, obstime='J2000')
cirs6 = CIRS(ra=ra, dec=dec, obstime='J2006')
cirs2 = cirs.transform_to(ITRS).transform_to(cirs)
cirs6_2 = cirs6.transform_to(ITRS).transform_to(cirs) # different obstime
# just check round-tripping
assert_allclose(cirs.ra, cirs2.ra)
assert_allclose(cirs.dec, cirs2.dec)
assert not allclose(cirs.ra, cirs6_2.ra)
assert not allclose(cirs.dec, cirs6_2.dec)
def test_gcrs_cirs():
"""
Check GCRS<->CIRS transforms for round-tripping. More complicated than the
above two because it's multi-hop
"""
ra, dec, _ = randomly_sample_sphere(200)
gcrs = GCRS(ra=ra, dec=dec, obstime='J2000')
gcrs6 = GCRS(ra=ra, dec=dec, obstime='J2006')
gcrs2 = gcrs.transform_to(CIRS).transform_to(gcrs)
gcrs6_2 = gcrs6.transform_to(CIRS).transform_to(gcrs)
assert_allclose(gcrs.ra, gcrs2.ra)
assert_allclose(gcrs.dec, gcrs2.dec)
assert not allclose(gcrs.ra, gcrs6_2.ra)
assert not allclose(gcrs.dec, gcrs6_2.dec)
# now try explicit intermediate pathways and ensure they're all consistent
gcrs3 = gcrs.transform_to(ITRS).transform_to(CIRS).transform_to(ITRS).transform_to(gcrs)
assert_allclose(gcrs.ra, gcrs3.ra)
assert_allclose(gcrs.dec, gcrs3.dec)
gcrs4 = gcrs.transform_to(ICRS).transform_to(CIRS).transform_to(ICRS).transform_to(gcrs)
assert_allclose(gcrs.ra, gcrs4.ra)
assert_allclose(gcrs.dec, gcrs4.dec)
def test_gcrs_altaz():
"""
Check GCRS<->AltAz transforms for round-tripping. Has multiple paths
"""
from .. import EarthLocation
ra, dec, _ = randomly_sample_sphere(1)
gcrs = GCRS(ra=ra[0], dec=dec[0], obstime='J2000')
# check array times sure N-d arrays work
times = Time(np.linspace(2456293.25, 2456657.25, 51) * u.day,
format='jd', scale='utc')
loc = EarthLocation(lon=10 * u.deg, lat=80. * u.deg)
aaframe = AltAz(obstime=times, location=loc)
aa1 = gcrs.transform_to(aaframe)
aa2 = gcrs.transform_to(ICRS).transform_to(CIRS).transform_to(aaframe)
aa3 = gcrs.transform_to(ITRS).transform_to(CIRS).transform_to(aaframe)
# make sure they're all consistent
assert_allclose(aa1.alt, aa2.alt)
assert_allclose(aa1.az, aa2.az)
assert_allclose(aa1.alt, aa3.alt)
assert_allclose(aa1.az, aa3.az)
def test_precessed_geocentric():
assert PrecessedGeocentric().equinox.jd == Time('J2000', scale='utc').jd
gcrs_coo = GCRS(180*u.deg, 2*u.deg, distance=10000*u.km)
pgeo_coo = gcrs_coo.transform_to(PrecessedGeocentric)
assert np.abs(gcrs_coo.ra - pgeo_coo.ra) > 10*u.marcsec
assert np.abs(gcrs_coo.dec - pgeo_coo.dec) > 10*u.marcsec
assert_allclose(gcrs_coo.distance, pgeo_coo.distance)
gcrs_roundtrip = pgeo_coo.transform_to(GCRS)
assert_allclose(gcrs_coo.ra, gcrs_roundtrip.ra)
assert_allclose(gcrs_coo.dec, gcrs_roundtrip.dec)
assert_allclose(gcrs_coo.distance, gcrs_roundtrip.distance)
pgeo_coo2 = gcrs_coo.transform_to(PrecessedGeocentric(equinox='B1850'))
assert np.abs(gcrs_coo.ra - pgeo_coo2.ra) > 1.5*u.deg
assert np.abs(gcrs_coo.dec - pgeo_coo2.dec) > 0.5*u.deg
assert_allclose(gcrs_coo.distance, pgeo_coo2.distance)
gcrs2_roundtrip = pgeo_coo2.transform_to(GCRS)
assert_allclose(gcrs_coo.ra, gcrs2_roundtrip.ra)
assert_allclose(gcrs_coo.dec, gcrs2_roundtrip.dec)
assert_allclose(gcrs_coo.distance, gcrs2_roundtrip.distance)
# shared by parametrized tests below. Some use the whole AltAz, others use just obstime
totest_frames = [AltAz(location=EarthLocation(-90*u.deg, 65*u.deg),
obstime=Time('J2000')), # J2000 is often a default so this might work when others don't
AltAz(location=EarthLocation(120*u.deg, -35*u.deg),
obstime=Time('J2000')),
AltAz(location=EarthLocation(-90*u.deg, 65*u.deg),
obstime=Time('2014-01-01 00:00:00')),
AltAz(location=EarthLocation(-90*u.deg, 65*u.deg),
obstime=Time('2014-08-01 08:00:00')),
AltAz(location=EarthLocation(120*u.deg, -35*u.deg),
obstime=Time('2014-01-01 00:00:00'))
]
MOONDIST = 385000*u.km # approximate moon semi-major orbit axis of moon
MOONDIST_CART = CartesianRepresentation(3**-0.5*MOONDIST, 3**-0.5*MOONDIST, 3**-0.5*MOONDIST)
EARTHECC = 0.017 + 0.005 # roughly earth orbital eccentricity, but with an added tolerance
@pytest.mark.parametrize('testframe', totest_frames)
def test_gcrs_altaz_sunish(testframe):
"""
Sanity-check that the sun is at a reasonable distance from any altaz
"""
sun = get_sun(testframe.obstime)
assert sun.frame.name == 'gcrs'
# the .to(u.au) is not necessary, it just makes the asserts on failure more readable
assert (EARTHECC - 1)*u.au < sun.distance.to(u.au) < (EARTHECC + 1)*u.au
sunaa = sun.transform_to(testframe)
assert (EARTHECC - 1)*u.au < sunaa.distance.to(u.au) < (EARTHECC + 1)*u.au
@pytest.mark.parametrize('testframe', totest_frames)
def test_gcrs_altaz_moonish(testframe):
"""
Sanity-check that an object resembling the moon goes to the right place with
a GCRS->AltAz transformation
"""
moon = GCRS(MOONDIST_CART, obstime=testframe.obstime)
moonaa = moon.transform_to(testframe)
# now check that the distance change is similar to earth radius
assert 1000*u.km < np.abs(moonaa.distance - moon.distance).to(u.au) < 7000*u.km
# now check that it round-trips
moon2 = moonaa.transform_to(moon)
assert_allclose(moon.cartesian.xyz, moon2.cartesian.xyz)
# also should add checks that the alt/az are different for different earth locations
@pytest.mark.parametrize('testframe', totest_frames)
def test_gcrs_altaz_bothroutes(testframe):
"""
Repeat of both the moonish and sunish tests above to make sure the two
routes through the coordinate graph are consistent with each other
"""
sun = get_sun(testframe.obstime)
sunaa_viaicrs = sun.transform_to(ICRS).transform_to(testframe)
sunaa_viaitrs = sun.transform_to(ITRS(obstime=testframe.obstime)).transform_to(testframe)
moon = GCRS(MOONDIST_CART, obstime=testframe.obstime)
moonaa_viaicrs = moon.transform_to(ICRS).transform_to(testframe)
moonaa_viaitrs = moon.transform_to(ITRS(obstime=testframe.obstime)).transform_to(testframe)
assert_allclose(sunaa_viaicrs.cartesian.xyz, sunaa_viaitrs.cartesian.xyz)
assert_allclose(moonaa_viaicrs.cartesian.xyz, moonaa_viaitrs.cartesian.xyz)
@pytest.mark.parametrize('testframe', totest_frames)
def test_cirs_altaz_moonish(testframe):
"""
Sanity-check that an object resembling the moon goes to the right place with
a CIRS<->AltAz transformation
"""
moon = CIRS(MOONDIST_CART, obstime=testframe.obstime)
moonaa = moon.transform_to(testframe)
assert 1000*u.km < np.abs(moonaa.distance - moon.distance).to(u.km) < 7000*u.km
# now check that it round-trips
moon2 = moonaa.transform_to(moon)
assert_allclose(moon.cartesian.xyz, moon2.cartesian.xyz)
@pytest.mark.parametrize('testframe', totest_frames)
def test_cirs_altaz_nodist(testframe):
"""
Check that a UnitSphericalRepresentation coordinate round-trips for the
CIRS<->AltAz transformation.
"""
coo0 = CIRS(UnitSphericalRepresentation(10*u.deg, 20*u.deg), obstime=testframe.obstime)
# check that it round-trips
coo1 = coo0.transform_to(testframe).transform_to(coo0)
assert_allclose(coo0.cartesian.xyz, coo1.cartesian.xyz)
@pytest.mark.parametrize('testframe', totest_frames)
def test_cirs_icrs_moonish(testframe):
"""
check that something like the moon goes to about the right distance from the
ICRS origin when starting from CIRS
"""
moonish = CIRS(MOONDIST_CART, obstime=testframe.obstime)
moonicrs = moonish.transform_to(ICRS)
assert 0.97*u.au < moonicrs.distance < 1.03*u.au
@pytest.mark.parametrize('testframe', totest_frames)
def test_gcrs_icrs_moonish(testframe):
"""
check that something like the moon goes to about the right distance from the
ICRS origin when starting from GCRS
"""
moonish = GCRS(MOONDIST_CART, obstime=testframe.obstime)
moonicrs = moonish.transform_to(ICRS)
assert 0.97*u.au < moonicrs.distance < 1.03*u.au
@pytest.mark.parametrize('testframe', totest_frames)
def test_icrs_gcrscirs_sunish(testframe):
"""
check that the ICRS barycenter goes to about the right distance from various
~geocentric frames (other than testframe)
"""
# slight offset to avoid divide-by-zero errors
icrs = ICRS(0*u.deg, 0*u.deg, distance=10*u.km)
gcrs = icrs.transform_to(GCRS(obstime=testframe.obstime))
assert (EARTHECC - 1)*u.au < gcrs.distance.to(u.au) < (EARTHECC + 1)*u.au
cirs = icrs.transform_to(CIRS(obstime=testframe.obstime))
assert (EARTHECC - 1)*u.au < cirs.distance.to(u.au) < (EARTHECC + 1)*u.au
itrs = icrs.transform_to(ITRS(obstime=testframe.obstime))
assert (EARTHECC - 1)*u.au < itrs.spherical.distance.to(u.au) < (EARTHECC + 1)*u.au
@pytest.mark.parametrize('testframe', totest_frames)
def test_icrs_altaz_moonish(testframe):
"""
Check that something expressed in *ICRS* as being moon-like goes to the
right AltAz distance
"""
# we use epv00 instead of get_sun because get_sun includes aberration
earth_pv_helio, earth_pv_bary = epv00(*get_jd12(testframe.obstime, 'tdb'))
earth_icrs_xyz = earth_pv_bary[0]*u.au
moonoffset = [0, 0, MOONDIST.value]*MOONDIST.unit
moonish_icrs = ICRS(CartesianRepresentation(earth_icrs_xyz + moonoffset))
moonaa = moonish_icrs.transform_to(testframe)
# now check that the distance change is similar to earth radius
assert 1000*u.km < np.abs(moonaa.distance - MOONDIST).to(u.au) < 7000*u.km
def test_gcrs_self_transform_closeby():
"""
Tests GCRS self transform for objects which are nearby and thus
have reasonable parallax.
Moon positions were originally created using JPL DE432s ephemeris.
The two lunar positions (one geocentric, one at a defined location)
are created via a transformation from ICRS to two different GCRS frames.
We test that the GCRS-GCRS self transform can correctly map one GCRS
frame onto the other.
"""
t = Time("2014-12-25T07:00")
moon_geocentric = SkyCoord(GCRS(318.10579159*u.deg,
-11.65281165*u.deg,
365042.64880308*u.km, obstime=t))
# this is the location of the Moon as seen from La Palma
obsgeoloc = [-5592982.59658935, -63054.1948592, 3059763.90102216]*u.m
obsgeovel = [4.59798494, -407.84677071, 0.]*u.m/u.s
moon_lapalma = SkyCoord(GCRS(318.7048445*u.deg,
-11.98761996*u.deg,
369722.8231031*u.km,
obstime=t,
obsgeoloc=obsgeoloc,
obsgeovel=obsgeovel))
transformed = moon_geocentric.transform_to(moon_lapalma.frame)
delta = transformed.separation_3d(moon_lapalma)
assert_allclose(delta, 0.0*u.m, atol=1*u.m)
@remote_data
@pytest.mark.skipif('not HAS_JPLEPHEM')
def test_ephemerides():
"""
We test that using different ephemerides gives very similar results
for transformations
"""
t = Time("2014-12-25T07:00")
moon = SkyCoord(GCRS(318.10579159*u.deg,
-11.65281165*u.deg,
365042.64880308*u.km, obstime=t))
icrs_frame = ICRS()
hcrs_frame = HCRS(obstime=t)
ecl_frame = HeliocentricTrueEcliptic(equinox=t)
cirs_frame = CIRS(obstime=t)
moon_icrs_builtin = moon.transform_to(icrs_frame)
moon_hcrs_builtin = moon.transform_to(hcrs_frame)
moon_helioecl_builtin = moon.transform_to(ecl_frame)
moon_cirs_builtin = moon.transform_to(cirs_frame)
with solar_system_ephemeris.set('jpl'):
moon_icrs_jpl = moon.transform_to(icrs_frame)
moon_hcrs_jpl = moon.transform_to(hcrs_frame)
moon_helioecl_jpl = moon.transform_to(ecl_frame)
moon_cirs_jpl = moon.transform_to(cirs_frame)
# most transformations should differ by an amount which is
# non-zero but of order milliarcsecs
sep_icrs = moon_icrs_builtin.separation(moon_icrs_jpl)
sep_hcrs = moon_hcrs_builtin.separation(moon_hcrs_jpl)
sep_helioecl = moon_helioecl_builtin.separation(moon_helioecl_jpl)
sep_cirs = moon_cirs_builtin.separation(moon_cirs_jpl)
assert_allclose([sep_icrs, sep_hcrs, sep_helioecl], 0.0*u.deg, atol=10*u.mas)
assert all(sep > 10*u.microarcsecond for sep in (sep_icrs, sep_hcrs, sep_helioecl))
# CIRS should be the same
assert_allclose(sep_cirs, 0.0*u.deg, atol=1*u.microarcsecond)
|