1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module defines base classes for all models. The base class of all
models is `~astropy.modeling.Model`. `~astropy.modeling.FittableModel` is
the base class for all fittable models. Fittable models can be linear or
nonlinear in a regression analysis sense.
All models provide a `__call__` method which performs the transformation in
a purely mathematical way, i.e. the models are unitless. Model instances can
represent either a single model, or a "model set" representing multiple copies
of the same type of model, but with potentially different values of the
parameters in each model making up the set.
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import abc
import copy
import inspect
import functools
import operator
import sys
import types
import warnings
from collections import defaultdict, OrderedDict
from itertools import chain, islice
import numpy as np
from ..utils import indent, isinstancemethod, metadata
from ..extern import six
from ..extern.six.moves import copyreg, zip
from ..table import Table
from ..utils import (sharedmethod, find_current_module,
check_broadcast, IncompatibleShapeError,
InheritDocstrings, OrderedDescriptorContainer)
from ..utils.codegen import make_function_with_signature
from ..utils.compat import suppress
from ..utils.compat.funcsigs import signature
from ..utils.exceptions import AstropyDeprecationWarning
from .utils import (array_repr_oneline, combine_labels,
make_binary_operator_eval, ExpressionTree,
AliasDict, get_inputs_and_params,
_BoundingBox)
from ..nddata.utils import add_array, extract_array
from .parameters import Parameter, InputParameterError
__all__ = ['Model', 'FittableModel', 'Fittable1DModel', 'Fittable2DModel',
'custom_model', 'ModelDefinitionError']
class ModelDefinitionError(TypeError):
"""Used for incorrect models definitions"""
def _model_oper(oper, **kwargs):
"""
Returns a function that evaluates a given Python arithmetic operator
between two models. The operator should be given as a string, like ``'+'``
or ``'**'``.
Any additional keyword arguments passed in are passed to
`_CompoundModelMeta._from_operator`.
"""
# Note: Originally this used functools.partial, but that won't work when
# used in the class definition of _CompoundModelMeta since
# _CompoundModelMeta has not been defined yet.
# Perform an arithmetic operation on two models.
return lambda left, right: _CompoundModelMeta._from_operator(oper,
left, right, **kwargs)
class _ModelMeta(OrderedDescriptorContainer, InheritDocstrings, abc.ABCMeta):
"""
Metaclass for Model.
Currently just handles auto-generating the param_names list based on
Parameter descriptors declared at the class-level of Model subclasses.
"""
registry = set()
"""
A registry of all known concrete (non-abstract) Model subclasses.
"""
_is_dynamic = False
"""
This flag signifies whether this class was created in the "normal" way,
with a class statement in the body of a module, as opposed to a call to
`type` or some other metaclass constructor, such that the resulting class
does not belong to a specific module. This is important for pickling of
dynamic classes.
This flag is always forced to False for new classes, so code that creates
dynamic classes should manually set it to True on those classes when
creating them.
"""
# Default empty dict for _parameters_, which will be empty on model
# classes that don't have any Parameters
_parameters_ = OrderedDict()
def __new__(mcls, name, bases, members):
# See the docstring for _is_dynamic above
if '_is_dynamic' not in members:
members['_is_dynamic'] = mcls._is_dynamic
return super(_ModelMeta, mcls).__new__(mcls, name, bases, members)
def __init__(cls, name, bases, members):
# Make sure OrderedDescriptorContainer gets to run before doing
# anything else
super(_ModelMeta, cls).__init__(name, bases, members)
if cls._parameters_:
if hasattr(cls, '_param_names'):
# Slight kludge to support compound models, where
# cls.param_names is a property; could be improved with a
# little refactoring but fine for now
cls._param_names = tuple(cls._parameters_)
else:
cls.param_names = tuple(cls._parameters_)
cls._create_inverse_property(members)
cls._create_bounding_box_property(members)
cls._handle_special_methods(members)
if not inspect.isabstract(cls) and not name.startswith('_'):
cls.registry.add(cls)
def __repr__(cls):
"""
Custom repr for Model subclasses.
"""
return cls._format_cls_repr()
def _repr_pretty_(cls, p, cycle):
"""
Repr for IPython's pretty printer.
By default IPython "pretty prints" classes, so we need to implement
this so that IPython displays the custom repr for Models.
"""
p.text(repr(cls))
def __reduce__(cls):
if not cls._is_dynamic:
# Just return a string specifying where the class can be imported
# from
return cls.__name__
else:
members = dict(cls.__dict__)
# Delete any ABC-related attributes--these will be restored when
# the class is reconstructed:
for key in list(members):
if key.startswith('_abc_'):
del members[key]
# Delete custom __init__ and __call__ if they exist:
for key in ('__init__', '__call__'):
if key in members:
del members[key]
return (type(cls), (cls.__name__, cls.__bases__, members))
@property
def name(cls):
"""
The name of this model class--equivalent to ``cls.__name__``.
This attribute is provided for symmetry with the `Model.name` attribute
of model instances.
"""
return cls.__name__
@property
def n_inputs(cls):
return len(cls.inputs)
@property
def n_outputs(cls):
return len(cls.outputs)
@property
def _is_concrete(cls):
"""
A class-level property that determines whether the class is a concrete
implementation of a Model--i.e. it is not some abstract base class or
internal implementation detail (i.e. begins with '_').
"""
return not (cls.__name__.startswith('_') or inspect.isabstract(cls))
def rename(cls, name):
"""
Creates a copy of this model class with a new name.
The new class is technically a subclass of the original class, so that
instance and type checks will still work. For example::
>>> from astropy.modeling.models import Rotation2D
>>> SkyRotation = Rotation2D.rename('SkyRotation')
>>> SkyRotation
<class '__main__.SkyRotation'>
Name: SkyRotation (Rotation2D)
Inputs: ('x', 'y')
Outputs: ('x', 'y')
Fittable parameters: ('angle',)
>>> issubclass(SkyRotation, Rotation2D)
True
>>> r = SkyRotation(90)
>>> isinstance(r, Rotation2D)
True
"""
if six.PY2 and isinstance(name, six.text_type):
# Unicode names are not allowed in Python 2, so just convert to
# ASCII. As such, for cross-compatibility all model names should
# just be ASCII for now.
name = name.encode('ascii')
mod = find_current_module(2)
if mod:
modname = mod.__name__
else:
modname = '__main__'
new_cls = type(name, (cls,), {})
# On Python 2 __module__ must be a str, not unicode
new_cls.__module__ = str(modname)
if hasattr(cls, '__qualname__'):
if new_cls.__module__ == '__main__':
# __main__ is not added to a class's qualified name
new_cls.__qualname__ = name
else:
new_cls.__qualname__ = '{0}.{1}'.format(modname, name)
return new_cls
def _create_inverse_property(cls, members):
inverse = members.get('inverse')
if inverse is None or cls.__bases__[0] is object:
# The latter clause is the prevent the below code from running on
# the Model base class, which implements the default getter and
# setter for .inverse
return
if isinstance(inverse, property):
# We allow the @property decorator to be omitted entirely from
# the class definition, though its use should be encouraged for
# clarity
inverse = inverse.fget
# Store the inverse getter internally, then delete the given .inverse
# attribute so that cls.inverse resolves to Model.inverse instead
cls._inverse = inverse
del cls.inverse
def _create_bounding_box_property(cls, members):
"""
Takes any bounding_box defined on a concrete Model subclass (either
as a fixed tuple or a property or method) and wraps it in the generic
getter/setter interface for the bounding_box attribute.
"""
# TODO: Much of this is verbatim from _create_inverse_property--I feel
# like there could be a way to generify properties that work this way,
# but for the time being that would probably only confuse things more.
bounding_box = members.get('bounding_box')
if bounding_box is None or cls.__bases__[0] is object:
return
if isinstance(bounding_box, property):
bounding_box = bounding_box.fget
if not callable(bounding_box):
# See if it's a hard-coded bounding_box (as a sequence) and
# normalize it
try:
bounding_box = _BoundingBox.validate(cls, bounding_box)
except AssertionError as exc:
raise ModelDefinitionError(exc.args[0])
else:
sig = signature(bounding_box)
# May be a method that only takes 'self' as an argument (like a
# property, but the @property decorator was forgotten)
# TODO: Maybe warn in the above case?
#
# However, if the method takes additional arguments then this is a
# parameterized bounding box and should be callable
if len(sig.parameters) > 1:
bounding_box = \
cls._create_bounding_box_subclass(bounding_box, sig)
if six.PY2 and isinstance(bounding_box, types.MethodType):
bounding_box = bounding_box.__func__
# See the Model.bounding_box getter definition for how this attribute
# is used
cls._bounding_box = bounding_box
del cls.bounding_box
def _create_bounding_box_subclass(cls, func, sig):
"""
For Models that take optional arguments for defining their bounding
box, we create a subclass of _BoundingBox with a ``__call__`` method
that supports those additional arguments.
Takes the function's Signature as an argument since that is already
computed in _create_bounding_box_property, so no need to duplicate that
effort.
"""
# TODO: Might be convenient if calling the bounding box also
# automatically sets the _user_bounding_box. So that
#
# >>> model.bounding_box(arg=1)
#
# in addition to returning the computed bbox, also sets it, so that
# it's a shortcut for
#
# >>> model.bounding_box = model.bounding_box(arg=1)
#
# Not sure if that would be non-obvious / confusing though...
def __call__(self, **kwargs):
return func(self._model, **kwargs)
kwargs = []
for idx, param in enumerate(sig.parameters.values()):
if idx == 0:
# Presumed to be a 'self' argument
continue
if param.default is param.empty:
raise ModelDefinitionError(
'The bounding_box method for {0} is not correctly '
'defined: If defined as a method all arguments to that '
'method (besides self) must be keyword arguments with '
'default values that can be used to compute a default '
'bounding box.'.format(cls.name))
kwargs.append((param.name, param.default))
__call__ = make_function_with_signature(__call__, ('self',), kwargs)
return type(str('_{0}BoundingBox'.format(cls.name)), (_BoundingBox,),
{'__call__': __call__})
def _handle_special_methods(cls, members):
# Handle init creation from inputs
def update_wrapper(wrapper, cls):
# Set up the new __call__'s metadata attributes as though it were
# manually defined in the class definition
# A bit like functools.update_wrapper but uses the class instead of
# the wrapped function
wrapper.__module__ = cls.__module__
wrapper.__doc__ = getattr(cls, wrapper.__name__).__doc__
if hasattr(cls, '__qualname__'):
wrapper.__qualname__ = '{0}.{1}'.format(
cls.__qualname__, wrapper.__name__)
if ('__call__' not in members and 'inputs' in members and
isinstance(members['inputs'], tuple)):
inputs = members['inputs']
# Done create a custom __call__ for classes that already have one
# explicitly defined (this includes the Model base class, and any
# other classes that manually override __call__
def __call__(self, *inputs, **kwargs):
"""Evaluate this model on the supplied inputs."""
return super(cls, self).__call__(*inputs, **kwargs)
args = ('self',) + inputs
new_call = make_function_with_signature(
__call__, args, [('model_set_axis', None)])
update_wrapper(new_call, cls)
cls.__call__ = new_call
if ('__init__' not in members and not inspect.isabstract(cls) and
cls._parameters_):
# If *all* the parameters have default values we can make them
# keyword arguments; otherwise they must all be positional
# arguments
if all(p.default is not None
for p in six.itervalues(cls._parameters_)):
args = ('self',)
kwargs = [(name, cls._parameters_[name].default)
for name in cls.param_names]
else:
args = ('self',) + cls.param_names
kwargs = {}
def __init__(self, *params, **kwargs):
return super(cls, self).__init__(*params, **kwargs)
new_init = make_function_with_signature(
__init__, args, kwargs, varkwargs='kwargs')
update_wrapper(new_init, cls)
cls.__init__ = new_init
# *** Arithmetic operators for creating compound models ***
__add__ = _model_oper('+')
__sub__ = _model_oper('-')
__mul__ = _model_oper('*')
__truediv__ = _model_oper('/')
__pow__ = _model_oper('**')
__or__ = _model_oper('|')
__and__ = _model_oper('&')
if six.PY2:
# The classic __div__ operator need only be implemented for Python 2
# without from __future__ import division
__div__ = _model_oper('/')
# *** Other utilities ***
def _format_cls_repr(cls, keywords=[]):
"""
Internal implementation of ``__repr__``.
This is separated out for ease of use by subclasses that wish to
override the default ``__repr__`` while keeping the same basic
formatting.
"""
# For the sake of familiarity start the output with the standard class
# __repr__
parts = [super(_ModelMeta, cls).__repr__()]
if not cls._is_concrete:
return parts[0]
def format_inheritance(cls):
bases = []
for base in cls.mro()[1:]:
if not issubclass(base, Model):
continue
elif (inspect.isabstract(base) or
base.__name__.startswith('_')):
break
bases.append(base.name)
if bases:
return '{0} ({1})'.format(cls.name, ' -> '.join(bases))
else:
return cls.name
try:
default_keywords = [
('Name', format_inheritance(cls)),
('Inputs', cls.inputs),
('Outputs', cls.outputs),
]
if cls.param_names:
default_keywords.append(('Fittable parameters',
cls.param_names))
for keyword, value in default_keywords + keywords:
if value is not None:
parts.append('{0}: {1}'.format(keyword, value))
return '\n'.join(parts)
except Exception:
# If any of the above formatting fails fall back on the basic repr
# (this is particularly useful in debugging)
return parts[0]
@six.add_metaclass(_ModelMeta)
class Model(object):
"""
Base class for all models.
This is an abstract class and should not be instantiated directly.
This class sets the constraints and other properties for all individual
parameters and performs parameter validation.
The following initialization arguments apply to the majority of Model
subclasses by default (exceptions include specialized utility models
like `~astropy.modeling.mappings.Mapping`). Parametric models take all
their parameters as arguments, followed by any of the following optional
keyword arguments:
Parameters
----------
name : str, optional
A human-friendly name associated with this model instance
(particularly useful for identifying the individual components of a
compound model).
meta : dict, optional
An optional dict of user-defined metadata to attach to this model.
How this is used and interpreted is up to the user or individual use
case.
n_models : int, optional
If given an integer greater than 1, a *model set* is instantiated
instead of a single model. This affects how the parameter arguments
are interpreted. In this case each parameter must be given as a list
or array--elements of this array are taken along the first axis (or
``model_set_axis`` if specified), such that the Nth element is the
value of that parameter for the Nth model in the set.
See the section on model sets in the documentation for more details.
model_set_axis : int, optional
This argument only applies when creating a model set (i.e. ``n_models >
1``). It changes how parameter values are interpreted. Normally the
first axis of each input parameter array (properly the 0th axis) is
taken as the axis corresponding to the model sets. However, any axis
of an input array may be taken as this "model set axis". This accepts
negative integers as well--for example use ``model_set_axis=-1`` if the
last (most rapidly changing) axis should be associated with the model
sets.
fixed : dict, optional
Dictionary ``{parameter_name: bool}`` setting the fixed constraint
for one or more parameters. `True` means the parameter is held fixed
during fitting and is prevented from updates once an instance of the
model has been created.
Alternatively the `~astropy.modeling.Parameter.fixed` property of a
parameter may be used to lock or unlock individual parameters.
tied : dict, optional
Dictionary ``{parameter_name: callable}`` of parameters which are
linked to some other parameter. The dictionary values are callables
providing the linking relationship.
Alternatively the `~astropy.modeling.Parameter.tied` property of a
parameter may be used to set the ``tied`` constraint on individual
parameters.
bounds : dict, optional
Dictionary ``{parameter_name: value}`` of lower and upper bounds of
parameters. Keys are parameter names. Values are a list of length 2
giving the desired range for the parameter.
Alternatively the `~astropy.modeling.Parameter.min` and
`~astropy.modeling.Parameter.max` or
~astropy.modeling.Parameter.bounds` properties of a parameter may be
used to set bounds on individual parameters.
eqcons : list, optional
List of functions of length n such that ``eqcons[j](x0, *args) == 0.0``
in a successfully optimized problem.
ineqcons : list, optional
List of functions of length n such that ``ieqcons[j](x0, *args) >=
0.0`` is a successfully optimized problem.
Examples
--------
>>> from astropy.modeling import models
>>> def tie_center(model):
... mean = 50 * model.stddev
... return mean
>>> tied_parameters = {'mean': tie_center}
Specify that ``'mean'`` is a tied parameter in one of two ways:
>>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3,
... tied=tied_parameters)
or
>>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3)
>>> g1.mean.tied
False
>>> g1.mean.tied = tie_center
>>> g1.mean.tied
<function tie_center at 0x...>
Fixed parameters:
>>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3,
... fixed={'stddev': True})
>>> g1.stddev.fixed
True
or
>>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3)
>>> g1.stddev.fixed
False
>>> g1.stddev.fixed = True
>>> g1.stddev.fixed
True
"""
parameter_constraints = Parameter.constraints
"""
Primarily for informational purposes, these are the types of constraints
that can be set on a model's parameters.
"""
model_constraints = ('eqcons', 'ineqcons')
"""
Primarily for informational purposes, these are the types of constraints
that constrain model evaluation.
"""
param_names = ()
"""
Names of the parameters that describe models of this type.
The parameters in this tuple are in the same order they should be passed in
when initializing a model of a specific type. Some types of models, such
as polynomial models, have a different number of parameters depending on
some other property of the model, such as the degree.
When defining a custom model class the value of this attribute is
automatically set by the `~astropy.modeling.Parameter` attributes defined
in the class body.
"""
inputs = ()
"""The name(s) of the input variable(s) on which a model is evaluated."""
outputs = ()
"""The name(s) of the output(s) of the model."""
standard_broadcasting = True
fittable = False
linear = True
meta = metadata.MetaData()
"""A dict-like object to store optional information."""
# By default models either use their own inverse property or have no
# inverse at all, but users may also assign a custom inverse to a model,
# optionally; in that case it is of course up to the user to determine
# whether their inverse is *actually* an inverse to the model they assign
# it to.
_inverse = None
_user_inverse = None
_bounding_box = None
_user_bounding_box = None
# Default n_models attribute, so that __len__ is still defined even when a
# model hasn't completed initialization yet
_n_models = 1
def __init__(self, *args, **kwargs):
super(Model, self).__init__()
meta = kwargs.pop('meta', None)
if meta is not None:
self.meta = meta
self._name = kwargs.pop('name', None)
self._initialize_constraints(kwargs)
# Remaining keyword args are either parameter values or invalid
# Parameter values must be passed in as keyword arguments in order to
# distinguish them
self._initialize_parameters(args, kwargs)
def __repr__(self):
return self._format_repr()
def __str__(self):
return self._format_str()
def __len__(self):
return self._n_models
def __call__(self, *inputs, **kwargs):
"""
Evaluate this model using the given input(s) and the parameter values
that were specified when the model was instantiated.
"""
inputs, format_info = self.prepare_inputs(*inputs, **kwargs)
parameters = self._param_sets(raw=True)
outputs = self.evaluate(*chain(inputs, parameters))
if self.n_outputs == 1:
outputs = (outputs,)
return self.prepare_outputs(format_info, *outputs, **kwargs)
# *** Arithmetic operators for creating compound models ***
__add__ = _model_oper('+')
__sub__ = _model_oper('-')
__mul__ = _model_oper('*')
__truediv__ = _model_oper('/')
__pow__ = _model_oper('**')
__or__ = _model_oper('|')
__and__ = _model_oper('&')
if six.PY2:
__div__ = _model_oper('/')
# *** Properties ***
@property
def name(self):
"""User-provided name for this model instance."""
return self._name
@property
def n_inputs(self):
"""
The number of inputs to this model.
Equivalent to ``len(model.inputs)``.
"""
return len(self.inputs)
@property
def n_outputs(self):
"""
The number of outputs from this model.
Equivalent to ``len(model.outputs)``.
"""
return len(self.outputs)
@property
def model_set_axis(self):
"""
The index of the model set axis--that is the axis of a parameter array
that pertains to which model a parameter value pertains to--as
specified when the model was initialized.
See the documentation on `Model Sets
<http://docs.astropy.org/en/stable/modeling/models.html#model-sets>`_
for more details.
"""
return self._model_set_axis
@property
def param_sets(self):
"""
Return parameters as a pset.
This is a list with one item per parameter set, which is an array of
that parameter's values across all parameter sets, with the last axis
associated with the parameter set.
"""
return self._param_sets()
@property
def parameters(self):
"""
A flattened array of all parameter values in all parameter sets.
Fittable parameters maintain this list and fitters modify it.
"""
# Currently the sequence of a model's parameters must be contiguous
# within the _parameters array (which may be a view of a larger array,
# for example when taking a sub-expression of a compound model), so
# the assumption here is reliable:
if not self.param_names:
# Trivial, but not unheard of
return self._parameters
start = self._param_metrics[self.param_names[0]]['slice'].start
stop = self._param_metrics[self.param_names[-1]]['slice'].stop
return self._parameters[start:stop]
@parameters.setter
def parameters(self, value):
"""
Assigning to this attribute updates the parameters array rather than
replacing it.
"""
if not self.param_names:
return
start = self._param_metrics[self.param_names[0]]['slice'].start
stop = self._param_metrics[self.param_names[-1]]['slice'].stop
try:
value = np.array(value).flatten()
self._parameters[start:stop] = value
except ValueError as e:
raise InputParameterError(
"Input parameter values not compatible with the model "
"parameters array: {0}".format(e))
@property
def fixed(self):
"""
A `dict` mapping parameter names to their fixed constraint.
"""
return self._constraints['fixed']
@property
def tied(self):
"""
A `dict` mapping parameter names to their tied constraint.
"""
return self._constraints['tied']
@property
def bounds(self):
"""
A `dict` mapping parameter names to their upper and lower bounds as
``(min, max)`` tuples.
"""
return self._constraints['bounds']
@property
def eqcons(self):
"""List of parameter equality constraints."""
return self._constraints['eqcons']
@property
def ineqcons(self):
"""List of parameter inequality constraints."""
return self._constraints['ineqcons']
@property
def inverse(self):
"""
Returns a new `~astropy.modeling.Model` instance which performs the
inverse transform, if an analytic inverse is defined for this model.
Even on models that don't have an inverse defined, this property can be
set with a manually-defined inverse, such a pre-computed or
experimentally determined inverse (often given as a
`~astropy.modeling.polynomial.PolynomialModel`, but not by
requirement).
A custom inverse can be deleted with ``del model.inverse``. In this
case the model's inverse is reset to its default, if a default exists
(otherwise the default is to raise `NotImplementedError`).
Note to authors of `~astropy.modeling.Model` subclasses: To define an
inverse for a model simply override this property to return the
appropriate model representing the inverse. The machinery that will
make the inverse manually-overridable is added automatically by the
base class.
"""
if self._user_inverse is not None:
return self._user_inverse
elif self._inverse is not None:
return self._inverse()
raise NotImplementedError("An analytical inverse transform has not "
"been implemented for this model.")
@inverse.setter
def inverse(self, value):
if not isinstance(value, (Model, type(None))):
raise ValueError(
"The ``inverse`` attribute may be assigned a `Model` "
"instance or `None` (where `None` restores the default "
"inverse for this model if one is defined.")
if value is None:
warnings.warn(
"Currently setting `model.inverse = None` resets the inverse "
"to the default inverse (if one exists). However, starting "
"in Astropy 1.2, setting `model.inverse = None` explicitly "
"forces a model to have no inverse (such that accessing "
"`model.inverse` raises a NotImplementedError) even if that "
"model's class has a default inverse.\n\n"
"Instead, call `del model.inverse` to reset the inverse to "
"its default (if a default exists for that model's class--"
"otherwise the model is reset to having no inverse.",
AstropyDeprecationWarning)
self._user_inverse = value
@inverse.deleter
def inverse(self):
"""
Resets the model's inverse to its default (if one exists, otherwise
the model will have no inverse).
"""
del self._user_inverse
@property
def has_user_inverse(self):
"""
A flag indicating whether or not a custom inverse model has been
assigned to this model by a user, via assignment to ``model.inverse``.
"""
return self._user_inverse is not None
@property
def bounding_box(self):
r"""
A `tuple` of length `n_inputs` defining the bounding box limits, or
`None` for no bounding box.
The default limits are given by a ``bounding_box`` property or method
defined in the class body of a specific model. If not defined then
this property just raises `NotImplementedError` by default (but may be
assigned a custom value by a user). ``bounding_box`` can be set
manually to an array-like object of shape ``(model.n_inputs, 2)``. For
further usage, see :ref:`bounding-boxes`
The limits are ordered according to the `numpy` indexing
convention, and are the reverse of the model input order,
e.g. for inputs ``('x', 'y', 'z')``, ``bounding_box`` is defined:
* for 1D: ``(x_low, x_high)``
* for 2D: ``((y_low, y_high), (x_low, x_high))``
* for 3D: ``((z_low, z_high), (y_low, y_high), (x_low, x_high))``
Examples
--------
Setting the ``bounding_box`` limits for a 1D and 2D model:
>>> from astropy.modeling.models import Gaussian1D, Gaussian2D
>>> model_1d = Gaussian1D()
>>> model_2d = Gaussian2D(x_stddev=1, y_stddev=1)
>>> model_1d.bounding_box = (-5, 5)
>>> model_2d.bounding_box = ((-6, 6), (-5, 5))
Setting the bounding_box limits for a user-defined 3D `custom_model`:
>>> from astropy.modeling.models import custom_model
>>> def const3d(x, y, z, amp=1):
... return amp
...
>>> Const3D = custom_model(const3d)
>>> model_3d = Const3D()
>>> model_3d.bounding_box = ((-6, 6), (-5, 5), (-4, 4))
To reset ``bounding_box`` to its default limits just delete the
user-defined value--this will reset it back to the default defined
on the class:
>>> del model_1d.bounding_box
To disable the bounding box entirely (including the default),
set ``bounding_box`` to `None`:
>>> model_1d.bounding_box = None
>>> model_1d.bounding_box # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "astropy\modeling\core.py", line 980, in bounding_box
"No bounding box is defined for this model (note: the "
NotImplementedError: No bounding box is defined for this model (note:
the bounding box was explicitly disabled for this model; use `del
model.bounding_box` to restore the default bounding box, if one is
defined for this model).
"""
if self._user_bounding_box is not None:
if self._user_bounding_box is NotImplemented:
raise NotImplementedError(
"No bounding box is defined for this model (note: the "
"bounding box was explicitly disabled for this model; "
"use `del model.bounding_box` to restore the default "
"bounding box, if one is defined for this model).")
return self._user_bounding_box
elif self._bounding_box is None:
raise NotImplementedError(
"No bounding box is defined for this model.")
elif isinstance(self._bounding_box, _BoundingBox):
# This typically implies a hard-coded bounding box. This will
# probably be rare, but it is an option
return self._bounding_box
elif isinstance(self._bounding_box, types.MethodType):
return self._bounding_box()
else:
# The only other allowed possibility is that it's a _BoundingBox
# subclass, so we call it with its default arguments and return an
# instance of it (that can be called to recompute the bounding box
# with any optional parameters)
# (In other words, in this case self._bounding_box is a *class*)
bounding_box = self._bounding_box((), _model=self)()
return self._bounding_box(bounding_box, _model=self)
@bounding_box.setter
def bounding_box(self, bounding_box):
"""
Assigns the bounding box limits.
"""
if bounding_box is None:
cls = None
# We use this to explicitly set an unimplemented bounding box (as
# opposed to no user bounding box defined)
bounding_box = NotImplemented
elif (isinstance(self._bounding_box, type) and
issubclass(self._bounding_box, _BoundingBox)):
cls = self._bounding_box
else:
cls = _BoundingBox
if cls is not None:
try:
bounding_box = cls.validate(self, bounding_box)
except AssertionError as exc:
raise ValueError(exc.args[0])
self._user_bounding_box = bounding_box
@bounding_box.deleter
def bounding_box(self):
self._user_bounding_box = None
@property
def has_user_bounding_box(self):
"""
A flag indicating whether or not a custom bounding_box has been
assigned to this model by a user, via assignment to
``model.bounding_box``.
"""
return self._user_bounding_box is not None
# *** Public methods ***
@abc.abstractmethod
def evaluate(self, *args, **kwargs):
"""Evaluate the model on some input variables."""
def render(self, out=None, coords=None):
"""
Evaluate a model at fixed positions, respecting the ``bounding_box``.
The key difference relative to evaluating the model directly is that
this method is limited to a bounding box if the `Model.bounding_box`
attribute is set.
Parameters
----------
out : `numpy.ndarray`, optional
An array that the evaluated model will be added to. If this is not
given (or given as ``None``), a new array will be created.
coords : array-like, optional
An array to be used to translate from the model's input coordinates
to the ``out`` array. It should have the property that
``self(coords)`` yields the same shape as ``out``. If ``out`` is
not specified, ``coords`` will be used to determine the shape of the
returned array. If this is not provided (or None), the model will be
evaluated on a grid determined by `Model.bounding_box`.
Returns
-------
out : `numpy.ndarray`
The model added to ``out`` if ``out`` is not ``None``, or else a
new array from evaluating the model over ``coords``.
If ``out`` and ``coords`` are both `None`, the returned array is
limited to the `Model.bounding_box` limits. If
`Model.bounding_box` is `None`, ``arr`` or ``coords`` must be passed.
Raises
------
ValueError
If ``coords`` are not given and the the `Model.bounding_box` of this
model is not set.
Examples
--------
:ref:`bounding-boxes`
"""
try:
bbox = self.bounding_box
except NotImplementedError:
bbox = None
ndim = self.n_inputs
if (coords is None) and (out is None) and (bbox is None):
raise ValueError('If no bounding_box is set, '
'coords or out must be input.')
# for consistent indexing
if ndim == 1:
if coords is not None:
coords = [coords]
if bbox is not None:
bbox = [bbox]
if coords is not None:
coords = np.asanyarray(coords, dtype=float)
# Check dimensions match out and model
assert len(coords) == ndim
if out is not None:
assert coords[0].shape == out.shape
else:
out = np.zeros(coords[0].shape)
if out is not None:
out = np.asanyarray(out, dtype=float)
try:
assert out.ndim == ndim
except AssertionError:
raise AssertionError(
'The array and model must have the same number '
'of dimensions.')
if bbox is not None:
# assures position is at center pixel, important when using add_array
pd = np.array([(np.mean(bb), np.ceil((bb[1] - bb[0]) / 2))
for bb in bbox]).astype(int).T
pos, delta = pd
if coords is not None:
sub_shape = tuple(delta * 2 + 1)
sub_coords = np.array([extract_array(c, sub_shape, pos)
for c in coords])
else:
limits = [slice(p - d, p + d + 1, 1) for p, d in pd.T]
sub_coords = np.mgrid[limits]
sub_coords = sub_coords[::-1]
if out is None:
out = self(*sub_coords)
else:
try:
out = add_array(out, self(*sub_coords), pos)
except ValueError:
raise ValueError(
'The `bounding_box` is larger than the input out in '
'one or more dimensions. Set '
'`model.bounding_box = None`.')
else:
if coords is None:
im_shape = out.shape
limits = [slice(i) for i in im_shape]
coords = np.mgrid[limits]
coords = coords[::-1]
out += self(*coords)
return out
def prepare_inputs(self, *inputs, **kwargs):
"""
This method is used in `~astropy.modeling.Model.__call__` to ensure
that all the inputs to the model can be broadcast into compatible
shapes (if one or both of them are input as arrays), particularly if
there are more than one parameter sets.
"""
model_set_axis = kwargs.pop('model_set_axis', None)
if model_set_axis is None:
# By default the model_set_axis for the input is assumed to be the
# same as that for the parameters the model was defined with
# TODO: Ensure that negative model_set_axis arguments are respected
model_set_axis = self.model_set_axis
n_models = len(self)
params = [getattr(self, name) for name in self.param_names]
inputs = [np.asanyarray(_input, dtype=float) for _input in inputs]
_validate_input_shapes(inputs, self.inputs, n_models,
model_set_axis, self.standard_broadcasting)
# The input formatting required for single models versus a multiple
# model set are different enough that they've been split into separate
# subroutines
if n_models == 1:
return _prepare_inputs_single_model(self, params, inputs,
**kwargs)
else:
return _prepare_inputs_model_set(self, params, inputs, n_models,
model_set_axis, **kwargs)
def prepare_outputs(self, format_info, *outputs, **kwargs):
if len(self) == 1:
return _prepare_outputs_single_model(self, outputs, format_info)
else:
return _prepare_outputs_model_set(self, outputs, format_info)
def copy(self):
"""
Return a copy of this model.
Uses a deep copy so that all model attributes, including parameter
values, are copied as well.
"""
return copy.deepcopy(self)
@sharedmethod
def rename(self, name):
"""
Return a copy of this model with a new name.
"""
new_model = self.copy()
new_model._name = name
return new_model
# *** Internal methods ***
@sharedmethod
def _from_existing(self, existing, param_names):
"""
Creates a new instance of ``cls`` that shares its underlying parameter
values with an existing model instance given by ``existing``.
This is used primarily by compound models to return a view of an
individual component of a compound model. ``param_names`` should be
the names of the parameters in the *existing* model to use as the
parameters in this new model. Its length should equal the number of
parameters this model takes, so that it can map parameters on the
existing model to parameters on this model one-to-one.
"""
# Basically this is an alternative __init__
if isinstance(self, type):
# self is a class, not an instance
needs_initialization = True
dummy_args = (0,) * len(param_names)
self = self.__new__(self, *dummy_args)
else:
needs_initialization = False
self = self.copy()
aliases = dict(zip(self.param_names, param_names))
# This is basically an alternative _initialize_constraints
constraints = {}
for cons_type in self.parameter_constraints:
orig = existing._constraints[cons_type]
constraints[cons_type] = AliasDict(orig, aliases)
self._constraints = constraints
self._n_models = existing._n_models
self._model_set_axis = existing._model_set_axis
self._parameters = existing._parameters
self._param_metrics = defaultdict(dict)
for param_a, param_b in six.iteritems(aliases):
# Take the param metrics info for the giving parameters in the
# existing model, and hand them to the appropriate parameters in
# the new model
self._param_metrics[param_a] = existing._param_metrics[param_b]
if needs_initialization:
self.__init__(*dummy_args)
return self
def _initialize_constraints(self, kwargs):
"""
Pop parameter constraint values off the keyword arguments passed to
`Model.__init__` and store them in private instance attributes.
"""
if hasattr(self, '_constraints'):
# Skip constraint initialization if it has already been handled via
# an alternate initialization
return
self._constraints = {}
# Pop any constraints off the keyword arguments
for constraint in self.parameter_constraints:
values = kwargs.pop(constraint, {})
self._constraints[constraint] = values.copy()
# Update with default parameter constraints
for param_name in self.param_names:
param = getattr(self, param_name)
# Parameters don't have all constraint types
value = getattr(param, constraint)
if value is not None:
self._constraints[constraint][param_name] = value
for constraint in self.model_constraints:
values = kwargs.pop(constraint, [])
self._constraints[constraint] = values
def _initialize_parameters(self, args, kwargs):
"""
Initialize the _parameters array that stores raw parameter values for
all parameter sets for use with vectorized fitting algorithms; on
FittableModels the _param_name attributes actually just reference
slices of this array.
"""
if hasattr(self, '_parameters'):
# Skip parameter initialization if it has already been handled via
# an alternate initialization
return
n_models = kwargs.pop('n_models', None)
if not (n_models is None or
(isinstance(n_models, (int, np.integer)) and n_models >=1)):
raise ValueError(
"n_models must be either None (in which case it is "
"determined from the model_set_axis of the parameter initial "
"values) or it must be a positive integer "
"(got {0!r})".format(n_models))
model_set_axis = kwargs.pop('model_set_axis', None)
if model_set_axis is None:
if n_models is not None and n_models > 1:
# Default to zero
model_set_axis = 0
else:
# Otherwise disable
model_set_axis = False
else:
if not (model_set_axis is False or
(isinstance(model_set_axis, int) and
not isinstance(model_set_axis, bool))):
raise ValueError(
"model_set_axis must be either False or an integer "
"specifying the parameter array axis to map to each "
"model in a set of models (got {0!r}).".format(
model_set_axis))
# Process positional arguments by matching them up with the
# corresponding parameters in self.param_names--if any also appear as
# keyword arguments this presents a conflict
params = {}
if len(args) > len(self.param_names):
raise TypeError(
"{0}.__init__() takes at most {1} positional arguments ({2} "
"given)".format(self.__class__.__name__, len(self.param_names),
len(args)))
for idx, arg in enumerate(args):
if arg is None:
# A value of None implies using the default value, if exists
continue
params[self.param_names[idx]] = np.asanyarray(arg, dtype=np.float)
# At this point the only remaining keyword arguments should be
# parameter names; any others are in error.
for param_name in self.param_names:
if param_name in kwargs:
if param_name in params:
raise TypeError(
"{0}.__init__() got multiple values for parameter "
"{1!r}".format(self.__class__.__name__, param_name))
value = kwargs.pop(param_name)
if value is None:
continue
params[param_name] = np.asanyarray(value, dtype=np.float)
if kwargs:
# If any keyword arguments were left over at this point they are
# invalid--the base class should only be passed the parameter
# values, constraints, and param_dim
for kwarg in kwargs:
# Just raise an error on the first unrecognized argument
raise TypeError(
'{0}.__init__() got an unrecognized parameter '
'{1!r}'.format(self.__class__.__name__, kwarg))
self._model_set_axis = model_set_axis
self._param_metrics = defaultdict(dict)
# Determine the number of model sets: If the model_set_axis is
# None then there is just one parameter set; otherwise it is determined
# by the size of that axis on the first parameter--if the other
# parameters don't have the right number of axes or the sizes of their
# model_set_axis don't match an error is raised
if model_set_axis is not False and n_models != 1 and params:
max_ndim = 0
if model_set_axis < 0:
min_ndim = abs(model_set_axis)
else:
min_ndim = model_set_axis + 1
for name, value in six.iteritems(params):
param_ndim = np.ndim(value)
if param_ndim < min_ndim:
raise InputParameterError(
"All parameter values must be arrays of dimension "
"at least {0} for model_set_axis={1} (the value "
"given for {2!r} is only {3}-dimensional)".format(
min_ndim, model_set_axis, name, param_ndim))
max_ndim = max(max_ndim, param_ndim)
if n_models is None:
# Use the dimensions of the first parameter to determine
# the number of model sets
n_models = value.shape[model_set_axis]
elif value.shape[model_set_axis] != n_models:
raise InputParameterError(
"Inconsistent dimensions for parameter {0!r} for "
"{1} model sets. The length of axis {2} must be the "
"same for all input parameter values".format(
name, n_models, model_set_axis))
self._check_param_broadcast(params, max_ndim)
else:
if n_models is None:
n_models = 1
self._check_param_broadcast(params, None)
self._n_models = n_models
self._initialize_parameter_values(params)
def _initialize_parameter_values(self, params):
# self._param_metrics should have been initialized in
# self._initialize_parameters
param_metrics = self._param_metrics
total_size = 0
for name in self.param_names:
if params.get(name) is None:
default = getattr(self, name).default
if default is None:
# No value was supplied for the parameter and the
# parameter does not have a default, therefore the model
# is underspecified
raise TypeError(
"{0}.__init__() requires a value for parameter "
"{1!r}".format(self.__class__.__name__, name))
value = params[name] = default
else:
value = params[name]
param_size = np.size(value)
param_shape = np.shape(value)
param_slice = slice(total_size, total_size + param_size)
param_metrics[name]['slice'] = param_slice
param_metrics[name]['shape'] = param_shape
total_size += param_size
self._param_metrics = param_metrics
self._parameters = np.empty(total_size, dtype=np.float64)
# Now set the parameter values (this will also fill
# self._parameters)
# TODO: This is a bit ugly, but easier to deal with than how this was
# done previously. There's still lots of opportunity for refactoring
# though, in particular once we move the _get/set_model_value methods
# out of Parameter and into Model (renaming them
# _get/set_parameter_value)
for name, value in params.items():
param_descr = getattr(self, name)
value = np.array(value)
if param_descr._setter is not None:
value = param_descr._setter(value)
self._parameters[param_metrics[name]['slice']] = value.ravel()
# Finally validate all the parameters; we do this last so that
# validators that depend on one of the other parameters' values will
# work
for name in params:
param_descr = getattr(self, name)
param_descr.validator(param_descr.value)
def _check_param_broadcast(self, params, max_ndim):
"""
This subroutine checks that all parameter arrays can be broadcast
against each other, and determines the shapes parameters must have in
order to broadcast correctly.
If model_set_axis is None this merely checks that the parameters
broadcast and returns an empty dict if so. This mode is only used for
single model sets.
"""
all_shapes = []
param_names = []
model_set_axis = self._model_set_axis
for name in self.param_names:
# Previously this just used iteritems(params), but we loop over all
# param_names instead just to ensure some determinism in the
# ordering behavior
if name not in params:
continue
value = params[name]
param_names.append(name)
# We've already checked that each parameter array is compatible in
# the model_set_axis dimension, but now we need to check the
# dimensions excluding that axis
# Split the array dimensions into the axes before model_set_axis
# and after model_set_axis
param_shape = np.shape(value)
param_ndim = len(param_shape)
if max_ndim is not None and param_ndim < max_ndim:
# All arrays have the same number of dimensions up to the
# model_set_axis dimension, but after that they may have a
# different number of trailing axes. The number of trailing
# axes must be extended for mutual compatibility. For example
# if max_ndim = 3 and model_set_axis = 0, an array with the
# shape (2, 2) must be extended to (2, 1, 2). However, an
# array with shape (2,) is extended to (2, 1).
new_axes = (1,) * (max_ndim - param_ndim)
if model_set_axis < 0:
# Just need to prepend axes to make up the difference
broadcast_shape = new_axes + param_shape
else:
broadcast_shape = (param_shape[:model_set_axis + 1] +
new_axes +
param_shape[model_set_axis + 1:])
self._param_metrics[name]['broadcast_shape'] = broadcast_shape
all_shapes.append(broadcast_shape)
else:
all_shapes.append(param_shape)
# Now check mutual broadcastability of all shapes
try:
check_broadcast(*all_shapes)
except IncompatibleShapeError as exc:
shape_a, shape_a_idx, shape_b, shape_b_idx = exc.args
param_a = param_names[shape_a_idx]
param_b = param_names[shape_b_idx]
raise InputParameterError(
"Parameter {0!r} of shape {1!r} cannot be broadcast with "
"parameter {2!r} of shape {3!r}. All parameter arrays "
"must have shapes that are mutually compatible according "
"to the broadcasting rules.".format(param_a, shape_a,
param_b, shape_b))
def _param_sets(self, raw=False):
"""
Implementation of the Model.param_sets property.
This internal implementation has a ``raw`` argument which controls
whether or not to return the raw parameter values (i.e. the values that
are actually stored in the ._parameters array, as opposed to the values
displayed to users. In most cases these are one in the same but there
are currently a few exceptions.
Note: This is notably an overcomplicated device and may be removed
entirely in the near future.
"""
param_metrics = self._param_metrics
values = []
for name in self.param_names:
if raw:
value = getattr(self, name)._raw_value
else:
value = getattr(self, name).value
broadcast_shape = param_metrics[name].get('broadcast_shape')
if broadcast_shape is not None:
value = value.reshape(broadcast_shape)
values.append(value)
shapes = [np.shape(value) for value in values]
if len(self) == 1:
# Add a single param set axis to the parameter's value (thus
# converting scalars to shape (1,) array values) for consistency
values = [np.array([value]) for value in values]
if len(set(shapes)) != 1:
# If the parameters are not all the same shape, converting to an
# array is going to produce an object array
# However the way Numpy creates object arrays is tricky in that it
# will recurse into array objects in the list and break them up
# into separate objects. Doing things this way ensures a 1-D
# object array the elements of which are the individual parameter
# arrays. There's not much reason to do this over returning a list
# except for consistency
psets = np.empty(len(values), dtype=object)
psets[:] = values
return psets
return np.array(values)
def _format_repr(self, args=[], kwargs={}, defaults={}):
"""
Internal implementation of ``__repr__``.
This is separated out for ease of use by subclasses that wish to
override the default ``__repr__`` while keeping the same basic
formatting.
"""
# TODO: I think this could be reworked to preset model sets better
parts = [repr(a) for a in args]
parts.extend(
"{0}={1}".format(name,
array_repr_oneline(getattr(self, name).value))
for name in self.param_names)
if self.name is not None:
parts.append('name={0!r}'.format(self.name))
for kwarg, value in kwargs.items():
if kwarg in defaults and defaults[kwarg] != value:
continue
parts.append('{0}={1!r}'.format(kwarg, value))
if len(self) > 1:
parts.append("n_models={0}".format(len(self)))
return '<{0}({1})>'.format(self.__class__.__name__, ', '.join(parts))
def _format_str(self, keywords=[]):
"""
Internal implementation of ``__str__``.
This is separated out for ease of use by subclasses that wish to
override the default ``__str__`` while keeping the same basic
formatting.
"""
default_keywords = [
('Model', self.__class__.__name__),
('Name', self.name),
('Inputs', self.inputs),
('Outputs', self.outputs),
('Model set size', len(self))
]
parts = ['{0}: {1}'.format(keyword, value)
for keyword, value in default_keywords + keywords
if value is not None]
parts.append('Parameters:')
if len(self) == 1:
columns = [[getattr(self, name).value]
for name in self.param_names]
else:
columns = [getattr(self, name).value
for name in self.param_names]
if columns:
param_table = Table(columns, names=self.param_names)
parts.append(indent(str(param_table), width=4))
return '\n'.join(parts)
class FittableModel(Model):
"""
Base class for models that can be fitted using the built-in fitting
algorithms.
"""
linear = False
# derivative with respect to parameters
fit_deriv = None
"""
Function (similar to the model's `~Model.evaluate`) to compute the
derivatives of the model with respect to its parameters, for use by fitting
algorithms. In other words, this computes the Jacobian matrix with respect
to the model's parameters.
"""
# Flag that indicates if the model derivatives with respect to parameters
# are given in columns or rows
col_fit_deriv = True
fittable = True
class Fittable1DModel(FittableModel):
"""
Base class for one-dimensional fittable models.
This class provides an easier interface to defining new models.
Examples can be found in `astropy.modeling.functional_models`.
"""
inputs = ('x',)
outputs = ('y',)
class Fittable2DModel(FittableModel):
"""
Base class for two-dimensional fittable models.
This class provides an easier interface to defining new models.
Examples can be found in `astropy.modeling.functional_models`.
"""
inputs = ('x', 'y')
outputs = ('z',)
def _make_arithmetic_operator(oper):
# We don't bother with tuple unpacking here for efficiency's sake, but for
# documentation purposes:
#
# f_eval, f_n_inputs, f_n_outputs = f
#
# and similarly for g
def op(f, g):
return (make_binary_operator_eval(oper, f[0], g[0]), f[1], f[2])
return op
def _composition_operator(f, g):
# We don't bother with tuple unpacking here for efficiency's sake, but for
# documentation purposes:
#
# f_eval, f_n_inputs, f_n_outputs = f
#
# and similarly for g
return (lambda inputs, params: g[0](f[0](inputs, params), params),
f[1], g[2])
def _join_operator(f, g):
# We don't bother with tuple unpacking here for efficiency's sake, but for
# documentation purposes:
#
# f_eval, f_n_inputs, f_n_outputs = f
#
# and similarly for g
return (lambda inputs, params: (f[0](inputs[:f[1]], params) +
g[0](inputs[f[1]:], params)),
f[1] + g[1], f[2] + g[2])
# TODO: Support a couple unary operators--at least negation?
BINARY_OPERATORS = {
'+': _make_arithmetic_operator(operator.add),
'-': _make_arithmetic_operator(operator.sub),
'*': _make_arithmetic_operator(operator.mul),
'/': _make_arithmetic_operator(operator.truediv),
'**': _make_arithmetic_operator(operator.pow),
'|': _composition_operator,
'&': _join_operator
}
_ORDER_OF_OPERATORS = [('|',), ('&',), ('+', '-'), ('*', '/'), ('**',)]
OPERATOR_PRECEDENCE = {}
for idx, ops in enumerate(_ORDER_OF_OPERATORS):
for op in ops:
OPERATOR_PRECEDENCE[op] = idx
del idx, op, ops
class _CompoundModelMeta(_ModelMeta):
_tree = None
_submodels = None
_submodel_names = None
_nextid = 0
_param_names = None
# _param_map is a mapping of the compound model's generated param names to
# the parameters of submodels they are associated with. The values in this
# mapping are (idx, name) tuples were idx is the index of the submodel this
# parameter is associated with, and name is the same parameter's name on
# the submodel
# In principle this will allow compound models to give entirely new names
# to parameters that don't have to be the same as their original names on
# the submodels, but right now that isn't taken advantage of
_param_map = None
_slice_offset = 0
# When taking slices of a compound model, this keeps track of how offset
# the first model in the slice is from the first model in the original
# compound model it was taken from
# This just inverts _param_map, swapping keys with values. This is also
# useful to have.
_param_map_inverse = None
_fittable = None
_evaluate = None
def __getitem__(cls, index):
index = cls._normalize_index(index)
if isinstance(index, (int, np.integer)):
return cls._get_submodels()[index]
else:
return cls._get_slice(index.start, index.stop)
def __getattr__(cls, attr):
# Make sure the _tree attribute is set; otherwise we are not looking up
# an attribute on a concrete compound model class and should just raise
# the AttributeError
if cls._tree is not None and attr in cls.param_names:
cls._init_param_descriptors()
return getattr(cls, attr)
raise AttributeError(attr)
def __repr__(cls):
if cls._tree is None:
# This case is mostly for debugging purposes
return cls._format_cls_repr()
expression = cls._format_expression()
components = cls._format_components()
keywords = [
('Expression', expression),
('Components', '\n' + indent(components))
]
return cls._format_cls_repr(keywords=keywords)
def __dir__(cls):
"""
Returns a list of attributes defined on a compound model, including
all of its parameters.
"""
try:
# Annoyingly, this will only work for Python 3.3+
basedir = super(_CompoundModelMeta, cls).__dir__()
except AttributeError:
basedir = list(set((dir(type(cls)) + list(cls.__dict__))))
if cls._tree is not None:
for name in cls.param_names:
basedir.append(name)
basedir.sort()
return basedir
def __reduce__(cls):
rv = super(_CompoundModelMeta, cls).__reduce__()
if isinstance(rv, tuple):
# Delete _evaluate from the members dict
with suppress(KeyError):
del rv[1][2]['_evaluate']
return rv
@property
def submodel_names(cls):
if cls._submodel_names is not None:
return cls._submodel_names
by_name = defaultdict(list)
for idx, submodel in enumerate(cls._get_submodels()):
# Keep track of the original sort order of the submodels
by_name[submodel.name].append(idx)
names = []
for basename, indices in six.iteritems(by_name):
if len(indices) == 1:
# There is only one model with this name, so it doesn't need an
# index appended to its name
names.append((basename, indices[0]))
else:
for idx in indices:
names.append(('{0}_{1}'.format(basename, idx), idx))
# Sort according to the models' original sort orders
names.sort(key=lambda k: k[1])
names = tuple(k[0] for k in names)
cls._submodels_names = names
return names
@property
def param_names(cls):
if cls._param_names is None:
cls._init_param_names()
return cls._param_names
@property
def fittable(cls):
if cls._fittable is None:
cls._fittable = all(m.fittable for m in cls._get_submodels())
return cls._fittable
# TODO: Maybe we could use make_function_with_signature for evaluate, but
# it's probably not worth it (and I'm not sure what the limit is on number
# of function arguments/local variables but we could break that limit for
# complicated compound models...
def evaluate(cls, *args):
if cls._evaluate is None:
func = cls._tree.evaluate(BINARY_OPERATORS,
getter=cls._model_evaluate_getter)[0]
# Making this a staticmethod isn't strictly necessary for Python 3,
# but it is necessary on Python 2 since looking up cls._evaluate
# will return an unbound method otherwise
cls._evaluate = staticmethod(func)
inputs = args[:cls.n_inputs]
params = iter(args[cls.n_inputs:])
result = cls._evaluate(inputs, params)
if cls.n_outputs == 1:
return result[0]
else:
return result
# TODO: This supports creating a new compound model from two existing
# compound models (or normal models) and a single operator. However, it
# ought also to be possible to create a new model from an *entire*
# expression, represented as a sequence of operators and their operands (or
# an exiting ExpressionTree) and build that into a compound model without
# creating an intermediate _CompoundModel class for every single operator
# in the expression. This will prove to be a useful optimization in many
# cases
@classmethod
def _from_operator(mcls, operator, left, right, additional_members={}):
"""
Given a Python operator (represented by a string, such as ``'+'``
or ``'*'``, and two model classes or instances, return a new compound
model that evaluates the given operator on the outputs of the left and
right input models.
If either of the input models are a model *class* (i.e. a subclass of
`~astropy.modeling.Model`) then the returned model is a new subclass of
`~astropy.modeling.Model` that may be instantiated with any parameter
values. If both input models are *instances* of a model, a new class
is still created, but this method returns an *instance* of that class,
taking the parameter values from the parameters of the input model
instances.
If given, the ``additional_members`` `dict` may provide additional
class members that should be added to the generated
`~astropy.modeling.Model` subclass. Some members that are generated by
this method should not be provided by ``additional_members``. These
include ``_tree``, ``inputs``, ``outputs``, ``linear``,
``standard_broadcasting``, and ``__module__`. This is currently for
internal use only.
"""
# Note, currently this only supports binary operators, but could be
# easily extended to support unary operators (namely '-') if/when
# needed
children = []
for child in (left, right):
if isinstance(child, (_CompoundModelMeta, _CompoundModel)):
children.append(child._tree)
else:
children.append(ExpressionTree(child))
tree = ExpressionTree(operator, left=children[0], right=children[1])
name = str('CompoundModel{0}'.format(_CompoundModelMeta._nextid))
_CompoundModelMeta._nextid += 1
mod = find_current_module(3)
if mod:
modname = mod.__name__
else:
modname = '__main__'
inputs, outputs = mcls._check_inputs_and_outputs(operator, left, right)
if operator in ('|', '+', '-'):
linear = left.linear and right.linear
else:
# Which is not to say it is *definitely* not linear but it would be
# trickier to determine
linear = False
standard_broadcasting = \
left.standard_broadcasting and right.standard_broadcasting
# Note: If any other members are added here, make sure to mention them
# in the docstring of this method.
members = additional_members
members.update({
'_tree': tree,
'_is_dynamic': True, # See docs for _ModelMeta._is_dynamic
'inputs': inputs,
'outputs': outputs,
'linear': linear,
'standard_broadcasting': standard_broadcasting,
'__module__': str(modname)})
new_cls = mcls(name, (_CompoundModel,), members)
if isinstance(left, Model) and isinstance(right, Model):
# Both models used in the operator were already instantiated models,
# not model *classes*. As such it's not particularly useful to return
# the class itself, but to instead produce a new instance:
instance = new_cls()
# Workaround for https://github.com/astropy/astropy/issues/3542
# TODO: Any effort to restructure the tree-like data structure for
# compound models should try to obviate this workaround--if
# intermediate compound models are stored in the tree as well then
# we can immediately check for custom inverses on sub-models when
# computing the inverse
instance._user_inverse = mcls._make_user_inverse(
operator, left, right)
if left._n_models == right._n_models:
instance._n_models = left._n_models
else:
raise ValueError('Model sets must have the same number of '
'components.')
return instance
# Otherwise return the new uninstantiated class itself
return new_cls
@classmethod
def _check_inputs_and_outputs(mcls, operator, left, right):
# TODO: These aren't the full rules for handling inputs and outputs, but
# this will handle most basic cases correctly
if operator == '|':
inputs = left.inputs
outputs = right.outputs
if left.n_outputs != right.n_inputs:
raise ModelDefinitionError(
"Unsupported operands for |: {0} (n_inputs={1}, "
"n_outputs={2}) and {3} (n_inputs={4}, n_outputs={5}); "
"n_outputs for the left-hand model must match n_inputs "
"for the right-hand model.".format(
left.name, left.n_inputs, left.n_outputs, right.name,
right.n_inputs, right.n_outputs))
elif operator == '&':
inputs = combine_labels(left.inputs, right.inputs)
outputs = combine_labels(left.outputs, right.outputs)
else:
# Without loss of generality
inputs = left.inputs
outputs = left.outputs
if (left.n_inputs != right.n_inputs or
left.n_outputs != right.n_outputs):
raise ModelDefinitionError(
"Unsupported operands for {0}: {1} (n_inputs={2}, "
"n_outputs={3}) and {4} (n_inputs={5}, n_outputs={6}); "
"models must have the same n_inputs and the same "
"n_outputs for this operator".format(
operator, left.name, left.n_inputs, left.n_outputs,
right.name, right.n_inputs, right.n_outputs))
return inputs, outputs
@classmethod
def _make_user_inverse(mcls, operator, left, right):
"""
Generates an inverse `Model` for this `_CompoundModel` when either
model in the operation has a *custom inverse* that was manually
assigned by the user.
If either model has a custom inverse, and in particular if another
`_CompoundModel` has a custom inverse, then none of that model's
sub-models should be considered at all when computing the inverse.
So in that case we just compute the inverse ahead of time and set
it as the new compound model's custom inverse.
Note, this use case only applies when combining model instances,
since model classes don't currently have a notion of a "custom
inverse" (though it could probably be supported by overriding the
class's inverse property).
TODO: Consider fixing things so the aforementioned class-based case
works as well. However, for the present purposes this is good enough.
"""
if not (operator in ('&', '|') and
(left._user_inverse or right._user_inverse)):
# These are the only operators that support an inverse right now
return None
try:
left_inv = left.inverse
right_inv = right.inverse
except NotImplementedError:
# If either inverse is undefined then just return False; this
# means the normal _CompoundModel.inverse routine will fail
# naturally anyways, since it requires all sub-models to have
# an inverse defined
return None
if operator == '&':
return left_inv & right_inv
else:
return right_inv | left_inv
# TODO: Perhaps, just perhaps, the post-order (or ???-order) ordering of
# leaf nodes is something the ExpressionTree class itself could just know
def _get_submodels(cls):
# Would make this a lazyproperty but those don't currently work with
# type objects
if cls._submodels is not None:
return cls._submodels
submodels = [c.value for c in cls._tree.traverse_postorder()
if c.isleaf]
cls._submodels = submodels
return submodels
def _init_param_descriptors(cls):
"""
This routine sets up the names for all the parameters on a compound
model, including figuring out unique names for those parameters and
also mapping them back to their associated parameters of the underlying
submodels.
Setting this all up is costly, and only necessary for compound models
that a user will directly interact with. For example when building an
expression like::
>>> M = (Model1 + Model2) * Model3 # doctest: +SKIP
the user will generally never interact directly with the temporary
result of the subexpression ``(Model1 + Model2)``. So there's no need
to setup all the parameters for that temporary throwaway. Only once
the full expression is built and the user initializes or introspects
``M`` is it necessary to determine its full parameterization.
"""
# Accessing cls.param_names will implicitly call _init_param_names if
# needed and thus also set up the _param_map; I'm not crazy about that
# design but it stands for now
for param_name in cls.param_names:
submodel_idx, submodel_param = cls._param_map[param_name]
submodel = cls[submodel_idx]
orig_param = getattr(submodel, submodel_param, None)
if isinstance(submodel, Model):
# Take the parameter's default from the model's value for that
# parameter
default = orig_param.value
else:
default = orig_param.default
# Copy constraints
constraints = dict((key, getattr(orig_param, key))
for key in Model.parameter_constraints)
# Note: Parameter.copy() returns a new unbound Parameter, never
# a bound Parameter even if submodel is a Model instance (as
# opposed to a Model subclass)
new_param = orig_param.copy(name=param_name, default=default,
**constraints)
setattr(cls, param_name, new_param)
def _init_param_names(cls):
"""
This subroutine is solely for setting up the ``param_names`` attribute
itself.
See ``_init_param_descriptors`` for the full parameter setup.
"""
# Currently this skips over Model *instances* in the expression tree;
# basically these are treated as constants and do not add
# fittable/tunable parameters to the compound model.
# TODO: I'm not 100% happy with this design, and maybe we need some
# interface for distinguishing fittable/settable parameters with
# *constant* parameters (which would be distinct from parameters with
# fixed constraints since they're permanently locked in place). But I'm
# not sure if this is really the best way to treat the issue.
names = []
param_map = {}
# Start counting the suffix indices to put on parameter names from the
# slice_offset. Usually this will just be zero, but for compound
# models that were sliced from another compound model this may be > 0
param_suffix = cls._slice_offset
for idx, model in enumerate(cls._get_submodels()):
if not model.param_names:
# Skip models that don't have parameters in the numbering
# TODO: Reevaluate this if it turns out to be confusing, though
# parameter-less models are not very common in practice (there
# are a few projections that don't take parameters)
continue
for param_name in model.param_names:
# This is sort of heuristic, but we want to check that
# model.param_name *actually* returns a Parameter descriptor,
# and that the model isn't some inconsistent type that happens
# to have a param_names attribute but does not actually
# implement settable parameters.
# In the future we can probably remove this check, but this is
# here specifically to support the legacy compat
# _CompositeModel which can be considered a pathological case
# in the context of the new framework
#if not isinstance(getattr(model, param_name, None),
# Parameter):
# break
name = '{0}_{1}'.format(param_name, param_suffix + idx)
names.append(name)
param_map[name] = (idx, param_name)
cls._param_names = tuple(names)
cls._param_map = param_map
cls._param_map_inverse = dict((v, k) for k, v in param_map.items())
def _format_expression(cls):
# TODO: At some point might be useful to make a public version of this,
# albeit with more formatting options
return cls._tree.format_expression(OPERATOR_PRECEDENCE)
def _format_components(cls):
return '\n\n'.join('[{0}]: {1!r}'.format(idx, m)
for idx, m in enumerate(cls._get_submodels()))
def _normalize_index(cls, index):
"""
Converts an index given to __getitem__ to either an integer, or
a slice with integer start and stop values.
If the length of the slice is exactly 1 this converts the index to a
simple integer lookup.
Negative integers are converted to positive integers.
"""
def get_index_from_name(name):
try:
return cls.submodel_names.index(name)
except ValueError:
raise IndexError(
'Compound model {0} does not have a component named '
'{1}'.format(cls.name, name))
def check_for_negative_index(index):
if index < 0:
new_index = len(cls.submodel_names) + index
if new_index < 0:
# If still < 0 then this is an invalid index
raise IndexError(
"Model index {0} out of range.".format(index))
else:
index = new_index
return index
if isinstance(index, six.string_types):
return get_index_from_name(index)
elif isinstance(index, slice):
if index.step not in (1, None):
# In principle it could be but I can scarcely imagine a case
# where it would be useful. If someone can think of one then
# we can enable it.
raise ValueError(
"Step not supported for compound model slicing.")
start = index.start if index.start is not None else 0
stop = (index.stop
if index.stop is not None else len(cls.submodel_names))
if isinstance(start, (int, np.integer)):
start = check_for_negative_index(start)
if isinstance(stop, (int, np.integer)):
stop = check_for_negative_index(stop)
if isinstance(start, six.string_types):
start = get_index_from_name(start)
if isinstance(stop, six.string_types):
stop = get_index_from_name(stop) + 1
length = stop - start
if length == 1:
return start
elif length <= 0:
raise ValueError("Empty slice of a compound model.")
return slice(start, stop)
elif isinstance(index, (int, np.integer)):
if index >= len(cls.submodel_names):
raise IndexError(
"Model index {0} out of range.".format(index))
return check_for_negative_index(index)
raise TypeError(
'Submodels can be indexed either by their integer order or '
'their name (got {0!r}).'.format(index))
def _get_slice(cls, start, stop):
"""
Return a new model build from a sub-expression of the expression
represented by this model.
Right now this is highly inefficient, as it creates a new temporary
model for each operator that appears in the sub-expression. It would
be better if this just built a new expression tree, and the new model
instantiated directly from that tree.
Once tree -> model instantiation is possible this should be fixed to
use that instead.
"""
members = {'_slice_offset': cls._slice_offset + start}
operators = dict((oper, _model_oper(oper, additional_members=members))
for oper in BINARY_OPERATORS)
return cls._tree.evaluate(operators, start=start, stop=stop)
@staticmethod
def _model_evaluate_getter(idx, model):
n_params = len(model.param_names)
n_inputs = model.n_inputs
n_outputs = model.n_outputs
# There is currently an unfortunate inconsistency in some models, which
# requires them to be instantiated for their evaluate to work. I think
# that needs to be reconsidered and fixed somehow, but in the meantime
# we need to check for that case
if (not isinstance(model, Model) and
isinstancemethod(model, model.evaluate)):
if n_outputs == 1:
# Where previously model was a class, now make an instance
def f(inputs, params):
param_values = tuple(islice(params, n_params))
return (model(*param_values).evaluate(
*chain(inputs, param_values)),)
else:
def f(inputs, params):
param_values = tuple(islice(params, n_params))
return model(*param_values).evaluate(
*chain(inputs, param_values))
else:
evaluate = model.evaluate
if n_outputs == 1:
f = lambda inputs, params: \
(evaluate(*chain(inputs, islice(params, n_params))),)
else:
f = lambda inputs, params: \
evaluate(*chain(inputs, islice(params, n_params)))
return (f, n_inputs, n_outputs)
@six.add_metaclass(_CompoundModelMeta)
class _CompoundModel(Model):
fit_deriv = None
col_fit_deriv = False
_submodels = None
def __str__(self):
expression = self._format_expression()
components = self._format_components()
keywords = [
('Expression', expression),
('Components', '\n' + indent(components))
]
return super(_CompoundModel, self)._format_str(keywords=keywords)
def __getattr__(self, attr):
# This __getattr__ is necessary, because _CompoundModelMeta creates
# Parameter descriptors *lazily*--they do not exist in the class
# __dict__ until one of them has been accessed.
# However, this is at odds with how Python looks up descriptors (see
# (https://docs.python.org/3/reference/datamodel.html#invoking-descriptors)
# which is to look directly in the class __dict__
# This workaround allows descriptors to work correctly when they are
# not initially found in the class __dict__
value = getattr(self.__class__, attr)
if hasattr(value, '__get__'):
# Object is a descriptor, so we should really return the result of
# its __get__
value = value.__get__(self, self.__class__)
return value
def __getitem__(self, index):
index = self.__class__._normalize_index(index)
model = self.__class__[index]
if isinstance(index, slice):
param_names = model.param_names
else:
param_map = self.__class__._param_map_inverse
param_names = tuple(param_map[index, name]
for name in model.param_names)
return model._from_existing(self, param_names)
if sys.version_info[:3] < (2, 7, 3):
def __reduce__(self):
# _CompoundModel classes have a generated evaluate() that is cached
# off in the _evaluate attribute. This can't be pickled, and so
# should be regenerated after unpickling (alas)
if find_current_module(2) is not copy:
# The copy module also uses __reduce__, but there's no problem
# there.
raise RuntimeError(
"Pickling of compound models is not possible using Python "
"versions less than 2.7.3 due to a bug in Python. See "
"http://docs.astropy.org/en/v1.0.4/known_issues.html#"
"pickling-error-on-compound-models for more information ("
"tried to pickle {0!r}).".format(self))
else:
return super(_CompoundModel, self).__reduce__()
@property
def submodel_names(self):
return self.__class__.submodel_names
@property
def param_names(self):
return self.__class__.param_names
@property
def fittable(self):
return self.__class__.fittable
@sharedmethod
def evaluate(self, *args):
return self.__class__.evaluate(*args)
# TODO: The way this works is highly inefficient--the inverse is created by
# making a new model for each operator in the compound model, which could
# potentially mean creating a large number of temporary throwaway model
# classes. This can definitely be optimized in the future by implementing
# a way to construct a single model class from an existing tree
@property
def inverse(self):
def _not_implemented(oper):
def _raise(x, y):
raise NotImplementedError(
"The inverse is not currently defined for compound "
"models created using the {0} operator.".format(oper))
return _raise
operators = dict((oper, _not_implemented(oper))
for oper in ('+', '-', '*', '/', '**'))
operators['&'] = operator.and_
# Reverse the order of compositions
operators['|'] = lambda x, y: operator.or_(y, x)
leaf_idx = -1
def getter(idx, model):
try:
# By indexing on self[] this will return an instance of the
# model, with all the appropriate parameters set, which is
# currently required to return an inverse
return self[idx].inverse
except NotImplementedError:
raise NotImplementedError(
"All models in a composite model must have an inverse "
"defined in order for the composite model to have an "
"inverse. {0!r} does not have an inverse.".format(model))
return self._tree.evaluate(operators, getter=getter)
@sharedmethod
def _get_submodels(self):
return self.__class__._get_submodels()
def custom_model(*args, **kwargs):
"""
Create a model from a user defined function. The inputs and parameters of
the model will be inferred from the arguments of the function.
This can be used either as a function or as a decorator. See below for
examples of both usages.
.. note::
All model parameters have to be defined as keyword arguments with
default values in the model function. Use `None` as a default argument
value if you do not want to have a default value for that parameter.
Parameters
----------
func : function
Function which defines the model. It should take N positional
arguments where ``N`` is dimensions of the model (the number of
independent variable in the model), and any number of keyword arguments
(the parameters). It must return the value of the model (typically as
an array, but can also be a scalar for scalar inputs). This
corresponds to the `~astropy.modeling.Model.evaluate` method.
fit_deriv : function, optional
Function which defines the Jacobian derivative of the model. I.e., the
derivative with respect to the *parameters* of the model. It should
have the same argument signature as ``func``, but should return a
sequence where each element of the sequence is the derivative
with respect to the corresponding argument. This corresponds to the
:meth:`~astropy.modeling.FittableModel.fit_deriv` method.
Examples
--------
Define a sinusoidal model function as a custom 1D model::
>>> from astropy.modeling.models import custom_model
>>> import numpy as np
>>> def sine_model(x, amplitude=1., frequency=1.):
... return amplitude * np.sin(2 * np.pi * frequency * x)
>>> def sine_deriv(x, amplitude=1., frequency=1.):
... return 2 * np.pi * amplitude * np.cos(2 * np.pi * frequency * x)
>>> SineModel = custom_model(sine_model, fit_deriv=sine_deriv)
Create an instance of the custom model and evaluate it::
>>> model = SineModel()
>>> model(0.25)
1.0
This model instance can now be used like a usual astropy model.
The next example demonstrates a 2D Moffat function model, and also
demonstrates the support for docstrings (this example could also include
a derivative, but it has been omitted for simplicity)::
>>> @custom_model
... def Moffat2D(x, y, amplitude=1.0, x_0=0.0, y_0=0.0, gamma=1.0,
... alpha=1.0):
... \"\"\"Two dimensional Moffat function.\"\"\"
... rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2
... return amplitude * (1 + rr_gg) ** (-alpha)
...
>>> print(Moffat2D.__doc__)
Two dimensional Moffat function.
>>> model = Moffat2D()
>>> model(1, 1) # doctest: +FLOAT_CMP
0.3333333333333333
"""
fit_deriv = kwargs.get('fit_deriv', None)
if len(args) == 1 and six.callable(args[0]):
return _custom_model_wrapper(args[0], fit_deriv=fit_deriv)
elif not args:
return functools.partial(_custom_model_wrapper, fit_deriv=fit_deriv)
else:
raise TypeError(
"{0} takes at most one positional argument (the callable/"
"function to be turned into a model. When used as a decorator "
"it should be passed keyword arguments only (if "
"any).".format(__name__))
def _custom_model_wrapper(func, fit_deriv=None):
"""
Internal implementation `custom_model`.
When `custom_model` is called as a function its arguments are passed to
this function, and the result of this function is returned.
When `custom_model` is used as a decorator a partial evaluation of this
function is returned by `custom_model`.
"""
if not six.callable(func):
raise ModelDefinitionError(
"func is not callable; it must be a function or other callable "
"object")
if fit_deriv is not None and not six.callable(fit_deriv):
raise ModelDefinitionError(
"fit_deriv not callable; it must be a function or other "
"callable object")
model_name = func.__name__
inputs, params = get_inputs_and_params(func)
if (fit_deriv is not None and
len(six.get_function_defaults(fit_deriv)) != len(params)):
raise ModelDefinitionError("derivative function should accept "
"same number of parameters as func.")
# TODO: Maybe have a clever scheme for default output name?
if inputs:
output_names = (inputs[0].name,)
else:
output_names = ('x',)
params = dict((param.name, Parameter(param.name, default=param.default))
for param in params)
mod = find_current_module(2)
if mod:
modname = mod.__name__
else:
modname = '__main__'
members = {
'__module__': str(modname),
'__doc__': func.__doc__,
'inputs': tuple(x.name for x in inputs),
'outputs': output_names,
'evaluate': staticmethod(func),
}
if fit_deriv is not None:
members['fit_deriv'] = staticmethod(fit_deriv)
members.update(params)
return type(model_name, (FittableModel,), members)
def render_model(model, arr=None, coords=None):
"""
Evaluates a model on an input array. Evaluation is limited to
a bounding box if the `Model.bounding_box` attribute is set.
Parameters
----------
model : `Model`
Model to be evaluated.
arr : `numpy.ndarray`, optional
Array on which the model is evaluated.
coords : array-like, optional
Coordinate arrays mapping to ``arr``, such that
``arr[coords] == arr``.
Returns
-------
array : `numpy.ndarray`
The model evaluated on the input ``arr`` or a new array from ``coords``.
If ``arr`` and ``coords`` are both `None`, the returned array is
limited to the `Model.bounding_box` limits. If
`Model.bounding_box` is `None`, ``arr`` or ``coords`` must be passed.
Examples
--------
:ref:`bounding-boxes`
"""
bbox = model.bounding_box
if (coords is None) & (arr is None) & (bbox is None):
raise AssertionError('If no bounding_box is set, coords or arr must be input.')
# for consistent indexing
if model.n_inputs == 1:
if coords is not None:
coords = [coords]
if bbox is not None:
bbox = [bbox]
if arr is not None:
arr = arr.copy()
# Check dimensions match model
assert arr.ndim == model.n_inputs
if coords is not None:
# Check dimensions match arr and model
coords = np.array(coords)
assert len(coords) == model.n_inputs
if arr is not None:
assert coords[0].shape == arr.shape
else:
arr = np.zeros(coords[0].shape)
if bbox is not None:
# assures position is at center pixel, important when using add_array
pd = pos, delta = np.array([(np.mean(bb), np.ceil((bb[1] - bb[0]) / 2))
for bb in bbox]).astype(int).T
if coords is not None:
sub_shape = tuple(delta * 2 + 1)
sub_coords = np.array([extract_array(c, sub_shape, pos) for c in coords])
else:
limits = [slice(p - d, p + d + 1, 1) for p, d in pd.T]
sub_coords = np.mgrid[limits]
sub_coords = sub_coords[::-1]
if arr is None:
arr = model(*sub_coords)
else:
try:
arr = add_array(arr, model(*sub_coords), pos)
except ValueError:
raise ValueError('The `bounding_box` is larger than the input'
' arr in one or more dimensions. Set '
'`model.bounding_box = None`.')
else:
if coords is None:
im_shape = arr.shape
limits = [slice(i) for i in im_shape]
coords = np.mgrid[limits]
arr += model(*coords[::-1])
return arr
def _prepare_inputs_single_model(model, params, inputs, **kwargs):
broadcasts = []
for idx, _input in enumerate(inputs):
input_shape = _input.shape
# Ensure that array scalars are always upgrade to 1-D arrays for the
# sake of consistency with how parameters work. They will be cast back
# to scalars at the end
if not input_shape:
inputs[idx] = _input.reshape((1,))
if not params:
max_broadcast = input_shape
else:
max_broadcast = ()
for param in params:
try:
if model.standard_broadcasting:
broadcast = check_broadcast(input_shape, param.shape)
else:
broadcast = input_shape
except IncompatibleShapeError:
raise ValueError(
"Model input argument {0!r} of shape {1!r} cannot be "
"broadcast with parameter {2!r} of shape "
"{3!r}.".format(model.inputs[idx], input_shape,
param.name, param.shape))
if len(broadcast) > len(max_broadcast):
max_broadcast = broadcast
elif len(broadcast) == len(max_broadcast):
max_broadcast = max(max_broadcast, broadcast)
broadcasts.append(max_broadcast)
if model.n_outputs > model.n_inputs:
if len(set(broadcasts)) > 1:
raise ValueError(
"For models with n_outputs > n_inputs, the combination of "
"all inputs and parameters must broadcast to the same shape, "
"which will be used as the shape of all outputs. In this "
"case some of the inputs had different shapes, so it is "
"ambiguous how to format outputs for this model. Try using "
"inputs that are all the same size and shape.")
else:
# Extend the broadcasts list to include shapes for all outputs
extra_outputs = model.n_outputs - model.n_inputs
if not broadcasts:
# If there were no inputs then the broadcasts list is empty
# just add a None since there is no broadcasting of outputs and
# inputs necessary (see _prepare_outputs_single_model)
broadcasts.append(None)
broadcasts.extend([broadcasts[0]] * extra_outputs)
return inputs, (broadcasts,)
def _prepare_outputs_single_model(model, outputs, format_info):
broadcasts = format_info[0]
outputs = list(outputs)
for idx, output in enumerate(outputs):
broadcast_shape = broadcasts[idx]
if broadcast_shape is not None:
if not broadcast_shape:
# Shape is (), i.e. a scalar should be returned
outputs[idx] = np.asscalar(output)
else:
outputs[idx] = output.reshape(broadcast_shape)
if model.n_outputs == 1:
return outputs[0]
else:
return tuple(outputs)
def _prepare_inputs_model_set(model, params, inputs, n_models, model_set_axis,
**kwargs):
reshaped = []
pivots = []
for idx, _input in enumerate(inputs):
max_param_shape = ()
if n_models > 1 and model_set_axis is not False:
# Use the shape of the input *excluding* the model axis
input_shape = (_input.shape[:model_set_axis] +
_input.shape[model_set_axis + 1:])
else:
input_shape = _input.shape
for param in params:
try:
check_broadcast(input_shape, param.shape)
except IncompatibleShapeError:
raise ValueError(
"Model input argument {0!r} of shape {1!r} cannot be "
"broadcast with parameter {2!r} of shape "
"{3!r}.".format(model.inputs[idx], input_shape,
param.name, param.shape))
if len(param.shape) > len(max_param_shape):
max_param_shape = param.shape
# We've now determined that, excluding the model_set_axis, the
# input can broadcast with all the parameters
input_ndim = len(input_shape)
if model_set_axis is False:
if len(max_param_shape) > input_ndim:
# Just needs to prepend new axes to the input
n_new_axes = 1 + len(max_param_shape) - input_ndim
new_axes = (1,) * n_new_axes
new_shape = new_axes + _input.shape
pivot = model.model_set_axis
else:
pivot = input_ndim - len(max_param_shape)
new_shape = (_input.shape[:pivot] + (1,) +
_input.shape[pivot:])
new_input = _input.reshape(new_shape)
else:
if len(max_param_shape) >= input_ndim:
n_new_axes = len(max_param_shape) - input_ndim
pivot = model.model_set_axis
new_axes = (1,) * n_new_axes
new_shape = (_input.shape[:pivot + 1] + new_axes +
_input.shape[pivot + 1:])
new_input = _input.reshape(new_shape)
else:
pivot = _input.ndim - len(max_param_shape) - 1
new_input = np.rollaxis(_input, model_set_axis,
pivot + 1)
pivots.append(pivot)
reshaped.append(new_input)
if model.n_inputs < model.n_outputs:
pivots.extend([model_set_axis] * (model.n_outputs - model.n_inputs))
return reshaped, (pivots,)
def _prepare_outputs_model_set(model, outputs, format_info):
pivots = format_info[0]
outputs = list(outputs)
for idx, output in enumerate(outputs):
pivot = pivots[idx]
if pivot < output.ndim and pivot != model.model_set_axis:
outputs[idx] = np.rollaxis(output, pivot,
model.model_set_axis)
if model.n_outputs == 1:
return outputs[0]
else:
return tuple(outputs)
def _validate_input_shapes(inputs, argnames, n_models, model_set_axis,
validate_broadcasting):
"""
Perform basic validation of model inputs--that they are mutually
broadcastable and that they have the minimum dimensions for the given
model_set_axis.
If validation succeeds, returns the total shape that will result from
broadcasting the input arrays with each other.
"""
check_model_set_axis = n_models > 1 and model_set_axis is not False
if not (validate_broadcasting or check_model_set_axis):
# Nothing else needed here
return
all_shapes = []
for idx, _input in enumerate(inputs):
input_shape = np.shape(_input)
# Ensure that the input's model_set_axis matches the model's
# n_models
if input_shape and check_model_set_axis:
# Note: Scalar inputs *only* get a pass on this
if len(input_shape) < model_set_axis + 1:
raise ValueError(
"For model_set_axis={0}, all inputs must be at "
"least {1}-dimensional.".format(
model_set_axis, model_set_axis + 1))
elif input_shape[model_set_axis] != n_models:
raise ValueError(
"Input argument {0!r} does not have the correct "
"dimensions in model_set_axis={1} for a model set with "
"n_models={2}.".format(argnames[idx], model_set_axis,
n_models))
all_shapes.append(input_shape)
if not validate_broadcasting:
return
try:
input_broadcast = check_broadcast(*all_shapes)
except IncompatibleShapeError as exc:
shape_a, shape_a_idx, shape_b, shape_b_idx = exc.args
arg_a = argnames[shape_a_idx]
arg_b = argnames[shape_b_idx]
raise ValueError(
"Model input argument {0!r} of shape {1!r} cannot "
"be broadcast with input {2!r} of shape {3!r}".format(
arg_a, shape_a, arg_b, shape_b))
return input_broadcast
copyreg.pickle(_ModelMeta, _ModelMeta.__reduce__)
copyreg.pickle(_CompoundModelMeta, _CompoundModelMeta.__reduce__)
|