1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Optimization algorithms used in `~astropy.modeling.fitting`.
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import warnings
import abc
import numpy as np
from ..extern import six
from ..utils.exceptions import AstropyUserWarning
__all__ = ["Optimization", "SLSQP", "Simplex"]
# Maximum number of iterations
DEFAULT_MAXITER = 100
# Step for the forward difference approximation of the Jacobian
DEFAULT_EPS = np.sqrt(np.finfo(float).eps)
#Default requested accuracy
DEFAULT_ACC = 1e-07
DEFAULT_BOUNDS = (-10 ** 12, 10 ** 12)
@six.add_metaclass(abc.ABCMeta)
class Optimization(object):
"""
Base class for optimizers.
Parameters
----------
opt_method : callable
Implements optimization method
Notes
-----
The base Optimizer does not support any constraints by default; individual
optimizers should explicitly set this list to the specific constraints
it supports.
"""
supported_constraints = []
def __init__(self, opt_method):
self._opt_method = opt_method
self._maxiter = DEFAULT_MAXITER
self._eps = DEFAULT_EPS
self._acc = DEFAULT_ACC
@property
def maxiter(self):
"""Maximum number of iterations"""
return self._maxiter
@maxiter.setter
def maxiter(self, val):
"""Set maxiter"""
self._maxiter = val
@property
def eps(self):
"""Step for the forward difference approximation of the Jacobian"""
return self._eps
@eps.setter
def eps(self, val):
"""Set eps value"""
self._eps = val
@property
def acc(self):
"""Requested accuracy"""
return self._acc
@acc.setter
def acc(self, val):
"""Set accuracy"""
self._acc = val
def __repr__(self):
fmt = "{0}()".format(self.__class__.__name__)
return fmt
@property
def opt_method(self):
return self._opt_method
@abc.abstractmethod
def __call__(self):
raise NotImplementedError("Subclasses should implement this method")
class SLSQP(Optimization):
"""
Sequential Least Squares Programming optimization algorithm.
The algorithm is described in [1]_. It supports tied and fixed
parameters, as well as bounded constraints. Uses
`scipy.optimize.fmin_slsqp`.
References
----------
.. [1] http://www.netlib.org/toms/733
"""
supported_constraints = ['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied']
def __init__(self):
from scipy.optimize import fmin_slsqp
super(SLSQP, self).__init__(fmin_slsqp)
self.fit_info = {
'final_func_val': None,
'numiter': None,
'exit_mode': None,
'message': None
}
def __call__(self, objfunc, initval, fargs, **kwargs):
"""
Run the solver.
Parameters
----------
objfunc : callable
objection function
initval : iterable
initial guess for the parameter values
fargs : tuple
other arguments to be passed to the statistic function
kwargs : dict
other keyword arguments to be passed to the solver
"""
kwargs['iter'] = kwargs.pop('maxiter', self._maxiter)
if 'epsilon' not in kwargs:
kwargs['epsilon'] = self._eps
if 'acc' not in kwargs:
kwargs['acc'] = self._acc
# set the values of constraints to match the requirements of fmin_slsqp
model = fargs[0]
pars = [getattr(model, name) for name in model.param_names]
bounds = [par.bounds for par in pars if not (par.fixed or par.tied)]
bounds = np.asarray(bounds)
for i in bounds:
if i[0] is None:
i[0] = DEFAULT_BOUNDS[0]
if i[1] is None:
i[1] = DEFAULT_BOUNDS[1]
# older versions of scipy require this array to be float
bounds = np.asarray(bounds, dtype=np.float)
eqcons = np.array(model.eqcons)
ineqcons = np.array(model.ineqcons)
fitparams, final_func_val, numiter, exit_mode, mess = self.opt_method(
objfunc, initval, args=fargs, full_output=True,
bounds=bounds, eqcons=eqcons, ieqcons=ineqcons,
**kwargs)
self.fit_info['final_func_val'] = final_func_val
self.fit_info['numiter'] = numiter
self.fit_info['exit_mode'] = exit_mode
self.fit_info['message'] = mess
if exit_mode != 0:
warnings.warn("The fit may be unsuccessful; check "
"fit_info['message'] for more information.",
AstropyUserWarning)
return fitparams, self.fit_info
class Simplex(Optimization):
"""
Neald-Mead (downhill simplex) algorithm [1].
This algorithm only uses function values, not derivatives.
Uses `scipy.optimize.fmin`.
.. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function
minimization", The Computer Journal, 7, pp. 308-313
"""
supported_constraints = ['bounds', 'fixed', 'tied']
def __init__(self):
from scipy.optimize import fmin as simplex
super(Simplex, self).__init__(simplex)
self.fit_info = {
'final_func_val': None,
'numiter': None,
'exit_mode': None,
'num_function_calls': None
}
def __call__(self, objfunc, initval, fargs, **kwargs):
"""
Run the solver.
Parameters
----------
objfunc : callable
objection function
initval : iterable
initial guess for the parameter values
fargs : tuple
other arguments to be passed to the statistic function
kwargs : dict
other keyword arguments to be passed to the solver
"""
if 'maxiter' not in kwargs:
kwargs['maxiter'] = self._maxiter
if 'acc' in kwargs:
self._acc = kwargs['acc']
kwargs.pop('acc')
if 'xtol' in kwargs:
self._acc = kwargs['xtol']
kwargs.pop('xtol')
fitparams, final_func_val, numiter, funcalls, exit_mode = self.opt_method(
objfunc, initval, args=fargs, xtol=self._acc,
full_output=True, **kwargs)
self.fit_info['final_func_val'] = final_func_val
self.fit_info['numiter'] = numiter
self.fit_info['exit_mode'] = exit_mode
self.fit_info['num_function_calls'] = funcalls
if self.fit_info['exit_mode'] == 1:
warnings.warn("The fit may be unsuccessful; "
"Maximum number of function evaluations reached.",
AstropyUserWarning)
if self.fit_info['exit_mode'] == 2:
warnings.warn("The fit may be unsuccessful; "
"Maximum number of iterations reached.",
AstropyUserWarning)
return fitparams, self.fit_info
|