1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Tabular models.
Tabular models of any dimension can be created using `tabular_model`.
For convenience `Tabular1D` and `Tabular2D` are provided.
Examples
--------
>>> table = np.array([[ 3., 0., 0.],
... [ 0., 2., 0.],
... [ 0., 0., 0.]])
>>> points = ([1, 2, 3], [1, 2, 3])
>>> t2 = Tabular2D(points, lookup_table=table, bounds_error=False, fill_value=None, method='nearest')
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import abc
import numpy as np
from .core import Model
from ..utils import minversion
from ..extern.six.moves import range
try:
import scipy
from scipy.interpolate import interpn
has_scipy = True
except ImportError:
has_scipy = False
has_scipy = has_scipy and minversion(scipy, "0.14")
__all__ = ['tabular_model', 'Tabular1D', 'Tabular2D']
__doctest_requires__ = {('tabular_model'): ['scipy']}
class _Tabular(Model):
"""
Returns an interpolated lookup table value.
Parameters
----------
points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ), optional
The points defining the regular grid in n dimensions.
lookup_table : array-like, shape (m1, ..., mn, ...)
The data on a regular grid in n dimensions.
method : str, optional
The method of interpolation to perform. Supported are "linear" and
"nearest", and "splinef2d". "splinef2d" is only supported for
2-dimensional data. Default is "linear".
bounds_error : bool, optional
If True, when interpolated values are requested outside of the
domain of the input data, a ValueError is raised.
If False, then ``fill_value`` is used.
fill_value : float, optional
If provided, the value to use for points outside of the
interpolation domain. If None, values outside
the domain are extrapolated. Extrapolation is not supported by method
"splinef2d".
Returns
-------
value : ndarray
Interpolated values at input coordinates.
Raises
------
ImportError
Scipy is not installed.
Notes
-----
Uses `scipy.interpolate.interpn`.
"""
linear = False
fittable = False
standard_broadcasting = False
outputs = ('y',)
lookup_table = abc.abstractproperty()
_is_dynamic = True
_id = 0
def __init__(self, points=None, lookup_table=None, method='linear',
bounds_error=True, fill_value=np.nan, **kwargs):
n_models = kwargs.get('n_models', 1)
if n_models > 1:
raise NotImplementedError('Only n_models=1 is supported.')
super(_Tabular, self).__init__(**kwargs)
if lookup_table is not None:
lookup_table = np.asarray(lookup_table)
if self.lookup_table.ndim != lookup_table.ndim:
raise ValueError("lookup_table should be an array with "
"{0} dimensions".format(self.lookup_table.ndim))
self.lookup_table = lookup_table
if points is None:
self.points = tuple(np.arange(x, dtype=np.float)
for x in self.lookup_table.shape)
else:
if self.lookup_table.ndim == 1 and not isinstance(points, tuple):
self.points = (points,)
else:
self.points = points
if len(self.points) != self.lookup_table.ndim:
raise ValueError("Expected grid points in "
"{0} directions, got {1}".format(self.lookup_table.ndim,
len(self.points)))
self.bounds_error = bounds_error
self.method = method
self.fill_value = fill_value
def __repr__(self):
fmt = "<{0}(points={1}, lookup_table={2})>".format(self.__class__.__name__,
self.points, self.lookup_table)
return fmt
def __str__(self):
default_keywords = [
('Model', self.__class__.__name__),
('Name', self.name),
('Inputs', self.inputs),
('Outputs', self.outputs),
('Parameters', ""),
(' points', self.points),
(' lookup_table', self.lookup_table),
(' method', self.method),
(' fill_value', self.fill_value),
(' bounds_error', self.bounds_error)
]
parts = ['{0}: {1}'.format(keyword, value)
for keyword, value in default_keywords
if value is not None]
return '\n'.join(parts)
@property
def bounding_box(self):
"""
Tuple defining the default ``bounding_box`` limits,
``(points_low, points_high)``.
Examples
--------
>>> from astropy.modeling.models import Tabular1D, Tabular2D
>>> t1 = Tabular1D(points=[1,2,3], lookup_table=[10, 20, 30])
>>> t1.bounding_box
(1, 3)
>>> t2 = Tabular2D(points=[[1,2,3],[2,3,4]], lookup_table=[[10,20,30],[20,30,40]])
>>> t2.bounding_box
((2, 4), (1, 3))
"""
bbox = [(min(p), max(p)) for p in self.points][::-1]
if len(bbox) == 1:
bbox = bbox[0]
return tuple(bbox)
def evaluate(self, *inputs):
"""
Return the interpolated values at the input coordinates.
Parameters
----------
inputs : list of scalars or ndarrays
Input coordinates. The number of inputs must be equal
to the dimensions of the lookup table.
"""
inputs = [inp.flatten() for inp in inputs[: self.n_inputs]]
inputs = np.array(inputs).T
if not has_scipy:
raise ImportError("This model requires scipy >= v0.14")
return interpn(self.points, self.lookup_table, inputs,
method=self.method, bounds_error=self.bounds_error,
fill_value=self.fill_value)
def tabular_model(dim, name=None):
"""
Make a ``Tabular`` model where ``n_inputs`` is
based on the dimension of the lookup_table.
This model has to be further initialized and when evaluated
returns the interpolated values.
Parameters
----------
dim : int
Dimensions of the lookup table.
name : str
Name for the class.
Examples
--------
>>> table = np.array([[ 3., 0., 0.],
... [ 0., 2., 0.],
... [ 0., 0., 0.]])
>>> tab = tabular_model(2, name='Tabular2D')
>>> print(tab)
<class 'abc.Tabular2D'>
Name: Tabular2D
Inputs: (u'x0', u'x1')
Outputs: (u'y',)
>>> points = ([1, 2, 3], [1, 2, 3])
Setting fill_value to None, allows extrapolation.
>>> m = tab(points, lookup_table=table, name='my_table', bounds_error=False, fill_value=None, method='nearest')
>>> xinterp = [0, 1, 1.5, 2.72, 3.14]
>>> m(xinterp, xinterp)
array([ 3., 3., 3., 0., 0.])
"""
table = np.zeros([2] * dim)
inputs = tuple('x{0}'.format(idx) for idx in range(table.ndim))
members = {'lookup_table': table, 'inputs': inputs}
if name is None:
model_id = _Tabular._id
_Tabular._id += 1
name = 'Tabular{0}'.format(model_id)
return type(str(name), (_Tabular,), members)
Tabular1D = tabular_model(1, name='Tabular1D')
Tabular2D = tabular_model(2, name='Tabular2D')
_tab_docs = """
method : str, optional
The method of interpolation to perform. Supported are "linear" and
"nearest", and "splinef2d". "splinef2d" is only supported for
2-dimensional data. Default is "linear".
bounds_error : bool, optional
If True, when interpolated values are requested outside of the
domain of the input data, a ValueError is raised.
If False, then ``fill_value`` is used.
fill_value : float, optional
If provided, the value to use for points outside of the
interpolation domain. If None, values outside
the domain are extrapolated. Extrapolation is not supported by method
"splinef2d".
Returns
-------
value : ndarray
Interpolated values at input coordinates.
Raises
------
ImportError
Scipy is not installed.
Notes
-----
Uses `scipy.interpolate.interpn`.
"""
Tabular1D.__doc__ = """
Tabular model in 1D.
Returns an interpolated lookup table value.
Parameters
----------
points : array-like of float of ndim=1.
The points defining the regular grid in n dimensions.
lookup_table : array-like, of ndim=1.
The data in one dimensions.
""" + _tab_docs
Tabular2D.__doc__ = """
Tabular model in 2D.
Returns an interpolated lookup table value.
Parameters
----------
points : tuple of ndarray of float, with shapes (m1, m2), optional
The points defining the regular grid in n dimensions.
lookup_table : array-like, shape (m1, m2)
The data on a regular grid in 2 dimensions.
""" + _tab_docs
|