File: test_compound.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (868 lines) | stat: -rw-r--r-- 28,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
# Licensed under a 3-clause BSD style license - see LICENSE.rst

from __future__ import (absolute_import, unicode_literals, division,
                        print_function)

import inspect
from copy import deepcopy

import numpy as np

from numpy.testing.utils import (assert_allclose, assert_array_equal,
                                 assert_almost_equal)

from ...extern.six.moves import cPickle as pickle
from ...tests.helper import pytest

from ..core import Model, ModelDefinitionError
from ..parameters import Parameter
from ..models import (Const1D, Shift, Scale, Rotation2D, Gaussian1D,
                      Gaussian2D, Polynomial1D, Polynomial2D,
                      Chebyshev2D, Legendre2D, Chebyshev1D, Legendre1D,
                      AffineTransformation2D, Identity, Mapping)


@pytest.mark.parametrize(('expr', 'result'),
                         [(lambda x, y: x + y, 5.0),
                          (lambda x, y: x - y, -1.0),
                          (lambda x, y: x * y, 6.0),
                          (lambda x, y: x / y, 2.0 / 3.0),
                          (lambda x, y: x ** y, 8.0)])
def test_two_model_class_arithmetic_1d(expr, result):
    # Const1D is perhaps the simplest model to test basic arithmetic with.
    # TODO: Should define more tests later on for more complicated
    # combinations of models

    S = expr(Const1D, Const1D)

    assert issubclass(S, Model)
    assert S.n_inputs == 1
    assert S.n_outputs == 1

    # Initialize an instance of the model, providing values for the two
    # "amplitude" parameters
    s = S(2, 3)

    # It shouldn't matter what input we evaluate on since this is a constant
    # function
    out = s(0)
    assert out == result
    assert isinstance(out, float)


@pytest.mark.parametrize(('expr', 'result'),
                         [(lambda x, y: x + y, [5.0, 5.0]),
                          (lambda x, y: x - y, [-1.0, -1.0]),
                          (lambda x, y: x * y, [6.0, 6.0]),
                          (lambda x, y: x / y, [2.0 / 3.0, 2.0 / 3.0]),
                          (lambda x, y: x ** y, [8.0, 8.0])])
def test_model_set(expr, result):
    s = expr(Const1D((2, 2), n_models=2), Const1D((3, 3), n_models=2))
    out = s(0, model_set_axis=False)

    assert_array_equal(out, result)


@pytest.mark.parametrize(('expr', 'result'),
                         [(lambda x, y: x + y, [5.0, 5.0]),
                          (lambda x, y: x - y, [-1.0, -1.0]),
                          (lambda x, y: x * y, [6.0, 6.0]),
                          (lambda x, y: x / y, [2.0 / 3.0, 2.0 / 3.0]),
                          (lambda x, y: x ** y, [8.0, 8.0])])
def test_model_set_raises_value_error(expr, result):
    """Check that creating model sets with components whose _n_models are
       different raise a value error
    """

    with pytest.raises(ValueError):
        s = expr(Const1D((2, 2), n_models=2), Const1D(3, n_models=1))


@pytest.mark.parametrize(('expr', 'result'),
                         [(lambda x, y: x + y, 5.0),
                          (lambda x, y: x - y, -1.0),
                          (lambda x, y: x * y, 6.0),
                          (lambda x, y: x / y, 2.0 / 3.0),
                          (lambda x, y: x ** y, 8.0)])
def test_two_model_instance_arithmetic_1d(expr, result):
    """
    Like test_two_model_class_arithmetic_1d, but creates a new model from two
    model *instances* with fixed parameters.
    """

    s = expr(Const1D(2), Const1D(3))

    assert isinstance(s, Model)
    assert s.n_inputs == 1
    assert s.n_outputs == 1

    out = s(0)
    assert out == result
    assert isinstance(out, float)


@pytest.mark.parametrize(('expr', 'result'),
                         [(lambda x, y: x + y, 5.0),
                          (lambda x, y: x - y, -1.0),
                          (lambda x, y: x * y, 6.0),
                          (lambda x, y: x / y, 2.0 / 3.0),
                          (lambda x, y: x ** y, 8.0)])
def test_two_model_mixed_arithmetic_1d(expr, result):
    """
    Like test_two_model_class_arithmetic_1d, but creates a new model from an
    expression of one model class with one model instance (and vice-versa).
    """

    S1 = expr(Const1D, Const1D(3))
    S2 = expr(Const1D(2), Const1D)

    for cls in (S1, S2):
        assert issubclass(cls, Model)
        assert cls.n_inputs == 1
        assert cls.n_outputs == 1

    # Requires values for both amplitudes even though one of them them has a
    # default
    # TODO: We may wish to fix that eventually, so that if a parameter has a
    # default it doesn't *have* to be given in the init
    s1 = S1(2, 3)
    s2 = S2(2, 3)

    for out in (s1(0), s2(0)):
        assert out == result
        assert isinstance(out, float)


def test_simple_two_model_class_compose_1d():
    """
    Shift and Scale are two of the simplest models to test model composition
    with.
    """

    S1 = Shift | Scale  # First shift then scale
    assert issubclass(S1, Model)
    assert S1.n_inputs == 1
    assert S1.n_outputs == 1

    s1 = S1(2, 3)  # Shift by 2 and scale by 3
    assert s1(1) == 9.0

    S2 = Scale | Shift  # First scale then shift
    assert issubclass(S2, Model)
    assert S2.n_inputs == 1
    assert S2.n_outputs == 1

    s2 = S2(2, 3)  # Scale by 2 then shift by 3
    assert s2(1) == 5.0

    # Test with array inputs
    assert_array_equal(s2([1, 2, 3]), [5.0, 7.0, 9.0])


def test_simple_two_model_class_compose_2d():
    """
    A simple example consisting of two rotations.
    """

    R = Rotation2D | Rotation2D
    assert issubclass(R, Model)
    assert R.n_inputs == 2
    assert R.n_outputs == 2

    r1 = R(45, 45)  # Rotate twice by 45 degrees
    assert_allclose(r1(0, 1), (-1, 0), atol=1e-10)

    r2 = R(90, 90)  # Rotate twice by 90 degrees
    assert_allclose(r2(0, 1), (0, -1), atol=1e-10)

    # Compose R with itself to produce 4 rotations
    R2 = R | R

    r3 = R2(45, 45, 45, 45)
    assert_allclose(r3(0, 1), (0, -1), atol=1e-10)


def test_expression_formatting():
    """
    Test that the expression strings from compound models are formatted
    correctly.
    """

    # For the purposes of this test it doesn't matter a great deal what
    # model(s) are used in the expression, I don't think
    G = Gaussian1D
    G2 = Gaussian2D

    M = G + G
    assert M._format_expression() == '[0] + [1]'

    M = G + G + G
    assert M._format_expression() == '[0] + [1] + [2]'

    M = G + G * G
    assert M._format_expression() == '[0] + [1] * [2]'

    M = G * G + G
    assert M._format_expression() == '[0] * [1] + [2]'

    M = G + G * G + G
    assert M._format_expression() == '[0] + [1] * [2] + [3]'

    M = (G + G) * (G + G)
    assert M._format_expression() == '([0] + [1]) * ([2] + [3])'

    # This example uses parentheses in the expression, but those won't be
    # preserved in the expression formatting since they technically aren't
    # necessary, and there's no way to know that they were originally
    # parenthesized (short of some deep, and probably not worthwhile
    # introspection)
    M = (G * G) + (G * G)
    assert M._format_expression() == '[0] * [1] + [2] * [3]'

    M = G ** G
    assert M._format_expression() == '[0] ** [1]'

    M = G + G ** G
    assert M._format_expression() == '[0] + [1] ** [2]'

    M = (G + G) ** G
    assert M._format_expression() == '([0] + [1]) ** [2]'

    M = G + G | G
    assert M._format_expression() == '[0] + [1] | [2]'

    M = G + (G | G)
    assert M._format_expression() == '[0] + ([1] | [2])'

    M = G & G | G2
    assert M._format_expression() == '[0] & [1] | [2]'

    M = G & (G | G)
    assert M._format_expression() == '[0] & ([1] | [2])'


def test_indexing_on_class():
    """
    Test indexing on compound model class objects, including cases where the
    submodels are classes, as well as instances, or both.
    """

    g = Gaussian1D(1, 2, 3, name='g')
    p = Polynomial1D(2, name='p')

    M = Gaussian1D + Const1D
    assert M[0] is Gaussian1D
    assert M[1] is Const1D
    assert M['Gaussian1D'] is M[0]
    assert M['Const1D'] is M[1]

    M = Gaussian1D + p
    assert M[0] is Gaussian1D
    assert M[1] is p
    assert M['Gaussian1D'] is M[0]
    assert M['p'] is M[1]

    m = g + p
    assert isinstance(m[0], Gaussian1D)
    assert isinstance(m[1], Polynomial1D)
    assert isinstance(m['g'], Gaussian1D)
    assert isinstance(m['p'], Polynomial1D)

    # Test negative indexing
    assert isinstance(m[-1], Polynomial1D)
    assert isinstance(m[-2], Gaussian1D)

    with pytest.raises(IndexError):
        m[42]

    with pytest.raises(IndexError):
        m['foobar']


# TODO: It would be good if there were an easier way to interrogate a compound
# model class for what expression it represents.  Not sure what that would look
# like though.
def test_slicing_on_class():
    """
    Test slicing a simple compound model class using integers.
    """

    A = Const1D.rename('A')
    B = Const1D.rename('B')
    C = Const1D.rename('C')
    D = Const1D.rename('D')
    E = Const1D.rename('E')
    F = Const1D.rename('F')

    M = A + B - C * D / E ** F

    assert M[0:1] is A
    # This test will also check that the correct parameter names are generated
    # for each slice (fairly trivial in this case since all the submodels have
    # the same parameter, but if any corner cases are found that aren't covered
    # by this test we can do something different...)
    assert M[0:1].param_names == ('amplitude',)
    # This looks goofy but if you slice by name to the sub-model of the same
    # name it should just return that model, logically.
    assert M['A':'A'] is A
    assert M['A':'A'].param_names == ('amplitude',)
    assert M[5:6] is F
    assert M[5:6].param_names == ('amplitude',)
    assert M['F':'F'] is F
    assert M['F':'F'].param_names == ('amplitude',)

    # 1 + 2
    assert M[:2](1, 2)(0) == 3
    assert M[:2].param_names == ('amplitude_0', 'amplitude_1')
    assert M[:'B'](1, 2)(0) == 3
    assert M[:'B'].param_names == ('amplitude_0', 'amplitude_1')
    # 2 - 3
    assert M[1:3](2, 3)(0) == -1
    assert M[1:3].param_names == ('amplitude_1', 'amplitude_2')
    assert M['B':'C'](2, 3)(0) == -1
    assert M['B':'C'].param_names == ('amplitude_1', 'amplitude_2')
    # 3 * 4
    assert M[2:4](3, 4)(0) == 12
    assert M[2:4].param_names == ('amplitude_2', 'amplitude_3')
    assert M['C':'D'](3, 4)(0) == 12
    assert M['C':'D'].param_names == ('amplitude_2', 'amplitude_3')
    # 4 / 5
    assert M[3:5](4, 5)(0) == 0.8
    assert M[3:5].param_names == ('amplitude_3', 'amplitude_4')
    assert M['D':'E'](4, 5)(0) == 0.8
    assert M['D':'E'].param_names == ('amplitude_3', 'amplitude_4')
    # 5 ** 6
    assert M[4:6](5, 6)(0) == 15625
    assert M[4:6].param_names == ('amplitude_4', 'amplitude_5')
    assert M['E':'F'](5, 6)(0) == 15625
    assert M['E':'F'].param_names == ('amplitude_4', 'amplitude_5')


def test_slicing_on_instance():
    """
    Test slicing a simple compound model class using integers.
    """

    A = Const1D.rename('A')
    B = Const1D.rename('B')
    C = Const1D.rename('C')
    D = Const1D.rename('D')
    E = Const1D.rename('E')
    F = Const1D.rename('F')

    M = A + B - C * D / E ** F
    m = M(1, 2, 3, 4, 5, 6)

    assert isinstance(m[0:1], A)
    assert isinstance(m['A':'A'], A)
    assert isinstance(m[5:6], F)
    assert isinstance(m['F':'F'], F)

    # 1 + 2
    assert m[:'B'](0) == 3
    assert m[:'B'].param_names == ('amplitude_0', 'amplitude_1')
    assert np.all(m[:'B'].parameters == [1, 2])
    # 2 - 3
    assert m['B':'C'](0) == -1
    assert m['B':'C'].param_names == ('amplitude_1', 'amplitude_2')
    assert np.all(m['B':'C'].parameters == [2, 3])
    # 3 * 4
    assert m['C':'D'](0) == 12
    assert m['C':'D'].param_names == ('amplitude_2', 'amplitude_3')
    assert np.all(m['C':'D'].parameters == [3, 4])
    # 4 / 5
    assert m['D':'E'](0) == 0.8
    assert m['D':'E'].param_names == ('amplitude_3', 'amplitude_4')
    assert np.all(m['D':'E'].parameters == [4, 5])
    # 5 ** 6
    assert m['E':'F'](0) == 15625
    assert m['E':'F'].param_names == ('amplitude_4', 'amplitude_5')
    assert np.all(m['E':'F'].parameters == [5, 6])


def test_indexing_on_instance():
    """Test indexing on compound model instances."""

    M = Gaussian1D + Const1D
    m = M(1, 0, 0.1, 2)
    assert isinstance(m[0], Gaussian1D)
    assert isinstance(m[1], Const1D)
    assert isinstance(m['Gaussian1D'], Gaussian1D)
    assert isinstance(m['Const1D'], Const1D)

    # Test parameter equivalence
    assert m[0].amplitude == 1 == m.amplitude_0
    assert m[0].mean == 0 == m.mean_0
    assert m[0].stddev == 0.1 == m.stddev_0
    assert m[1].amplitude == 2 == m.amplitude_1

    # Test that parameter value updates are symmetric between the compound
    # model and the submodel returned by indexing
    const = m[1]
    m.amplitude_1 = 42
    assert const.amplitude == 42
    const.amplitude = 137
    assert m.amplitude_1 == 137


    # Similar couple of tests, but now where the compound model was created
    # from model instances
    g = Gaussian1D(1, 2, 3, name='g')
    p = Polynomial1D(2, name='p')
    m = g + p
    assert m[0].name == 'g'
    assert m[1].name == 'p'
    assert m['g'].name == 'g'
    assert m['p'].name == 'p'

    poly = m[1]
    m.c0_1 = 12345
    assert poly.c0 == 12345
    poly.c1 = 6789
    assert m.c1_1 == 6789

    # Ensure this did *not* modify the original models we used as templates
    assert p.c0 == 0
    assert p.c1 == 0

    # Test negative indexing
    assert isinstance(m[-1], Polynomial1D)
    assert isinstance(m[-2], Gaussian1D)

    with pytest.raises(IndexError):
        m[42]

    with pytest.raises(IndexError):
        m['foobar']


def test_basic_compound_inverse():
    """
    Test basic inversion of compound models in the limited sense supported for
    models made from compositions and joins only.
    """

    t = (Shift(2) & Shift(3)) | (Scale(2) & Scale(3)) | Rotation2D(90)
    assert_allclose(t.inverse(*t(0, 1)), (0, 1))


@pytest.mark.parametrize('model', [
    Shift(0) + Shift(0) | Shift(0),
    Shift(0) - Shift(0) | Shift(0),
    Shift(0) * Shift(0) | Shift(0),
    Shift(0) / Shift(0) | Shift(0),
    Shift(0) ** Shift(0) | Shift(0),
    Gaussian1D(1, 2, 3) | Gaussian1D(4, 5, 6)])
def test_compound_unsupported_inverse(model):
    """
    Ensure inverses aren't supported in cases where it shouldn't be.
    """

    with pytest.raises(NotImplementedError):
        model.inverse


def test_mapping_basic_permutations():
    """
    Tests a couple basic examples of the Mapping model--specifically examples
    that merely permute the outputs.
    """

    x, y = Rotation2D(90)(1, 2)

    RS = Rotation2D | Mapping((1, 0))
    x_prime, y_prime = RS(90)(1, 2)
    assert_allclose((x, y), (y_prime, x_prime))

    # A more complicated permutation
    M = Rotation2D & Scale
    m = M(90, 2)
    x, y, z = m(1, 2, 3)

    MS = M | Mapping((2, 0, 1))
    ms = MS(90, 2)
    x_prime, y_prime, z_prime = ms(1, 2, 3)
    assert_allclose((x, y, z), (y_prime, z_prime, x_prime))


def test_mapping_inverse():
    """Tests inverting a compound model that includes a `Mapping`."""

    RS = Rotation2D & Scale

    # Rotates 2 of the coordinates and scales the third--then rotates on a
    # different axis and scales on the axis of rotation.  No physical meaning
    # here just a simple test
    M = RS | Mapping([2, 0, 1]) | RS

    m = M(12.1, 13.2, 14.3, 15.4)

    assert_allclose((0, 1, 2), m.inverse(*m(0, 1, 2)), atol=1e-08)


def test_identity_input():
    """
    Test a case where an Identity (or Mapping) model is the first in a chain
    of composite models and thus is responsible for handling input broadcasting
    properly.

    Regression test for https://github.com/astropy/astropy/pull/3362
    """

    ident1 = Identity(1)
    shift = Shift(1)
    rotation = Rotation2D(angle=90)
    model = ident1 & shift | rotation
    assert_allclose(model(1, 2), [-3.0, 1.0])

    # Same test case but using class composition
    TestModel = ident1 & Shift | Rotation2D
    model = TestModel(offset_1=1, angle_2=90)
    assert_allclose(model(1, 2), [-3.0, 1.0])


def test_slicing_on_instances_2():
    """
    More slicing tests.

    Regression test for https://github.com/embray/astropy/pull/10
    """

    model_a = Shift(1, name='a')
    model_b = Shift(2, name='b')
    model_c = Rotation2D(3, name='c')
    model_d = Scale(2, name='d')
    model_e = Scale(3, name='e')

    m = (model_a & model_b) | model_c | (model_d & model_e)

    with pytest.raises(ModelDefinitionError):
        # The slice can't actually be taken since the resulting model cannot be
        # evaluated
        assert m[1:].submodel_names == ('b', 'c', 'd', 'e')

    assert m[:].submodel_names == ('a', 'b', 'c', 'd', 'e')
    assert m['a':].submodel_names == ('a', 'b', 'c', 'd', 'e')

    with pytest.raises(ModelDefinitionError):
        assert m['c':'d'].submodel_names == ('c', 'd')

    assert m[1:2].name == 'b'
    assert m[2:7].submodel_names == ('c', 'd', 'e')
    with pytest.raises(IndexError):
        m['x']
    with pytest.raises(IndexError):
        m['a' : 'r']

    with pytest.raises(ModelDefinitionError):
        assert m[-4:4].submodel_names == ('b', 'c', 'd')

    with pytest.raises(ModelDefinitionError):
        assert m[-4:-2].submodel_names == ('b', 'c')


def test_slicing_on_instances_3():
    """
    Like `test_slicing_on_instances_2` but uses a compound model that does not
    have any invalid slices due to the resulting model being invalid
    (originally test_slicing_on_instances_2 passed without any
    ModelDefinitionErrors being raised, but that was before we prevented
    invalid models from being created).
    """

    model_a = Shift(1, name='a')
    model_b = Shift(2, name='b')
    model_c = Gaussian1D(3, 0, 0.1, name='c')
    model_d = Scale(2, name='d')
    model_e = Scale(3, name='e')

    m = (model_a + model_b) | model_c | (model_d + model_e)

    assert m[1:].submodel_names == ('b', 'c', 'd', 'e')
    assert m[:].submodel_names == ('a', 'b', 'c', 'd', 'e')
    assert m['a':].submodel_names == ('a', 'b', 'c', 'd', 'e')
    assert m['c':'d'].submodel_names == ('c', 'd')
    assert m[1:2].name == 'b'
    assert m[2:7].submodel_names == ('c', 'd', 'e')
    with pytest.raises(IndexError):
        m['x']
    with pytest.raises(IndexError):
        m['a' : 'r']
    assert m[-4:4].submodel_names == ('b', 'c', 'd')
    assert m[-4:-2].submodel_names == ('b', 'c')


def test_slicing_on_instance_with_parameterless_model():
    """
    Regression test to fix an issue where the indices attached to parameter
    names on a compound model were not handled properly when one or more
    submodels have no parameters.  This was especially evident in slicing.
    """

    p2 = Polynomial2D(1, c0_0=1, c1_0=2, c0_1=3)
    p1 = Polynomial2D(1, c0_0=1, c1_0=2, c0_1=3)
    mapping = Mapping((0, 1, 0, 1))
    offx = Shift(-2, name='x_translation')
    offy = Shift(-1, name='y_translation')
    aff = AffineTransformation2D(matrix=[[1, 2], [3, 4]], name='rotation')
    model = mapping | (p1 & p2) | (offx & offy) | aff

    assert model.param_names == ('c0_0_1', 'c1_0_1', 'c0_1_1',
                                 'c0_0_2', 'c1_0_2', 'c0_1_2',
                                 'offset_3', 'offset_4',
                                 'matrix_5', 'translation_5')
    assert model(1, 2) == (23.0, 53.0)

    m = model[3:]
    assert m.param_names == ('offset_3', 'offset_4', 'matrix_5',
                             'translation_5')
    assert m(1, 2) == (1.0, 1.0)


def test_compound_model_with_nonstandard_broadcasting():
    """
    Ensure that the ``standard_broadcasting`` flag is properly propagated when
    creating compound models.

    See the commit message for the commit in which this was added for more
    details.
    """

    offx = Shift(1)
    offy = Shift(2)
    rot = AffineTransformation2D([[0, -1], [1, 0]])
    m = (offx & offy) | rot

    x, y = m(0, 0)
    assert x == -2
    assert y == 1

    # make sure conversion back to scalars is working properly
    assert isinstance(x, float)
    assert isinstance(y, float)

    x, y = m([0, 1, 2], [0, 1, 2])
    assert np.all(x == [-2, -3, -4])
    assert np.all(y == [1, 2, 3])


def test_compound_model_classify_attributes():
    """
    Regression test for an issue raised here:
    https://github.com/astropy/astropy/pull/3231#discussion_r22221123

    The issue is that part of the `help` implementation calls a utility
    function called `inspect.classify_class_attrs`, which was leading to an
    infinite recursion.

    This is a useful test in its own right just in that it tests that compound
    models can be introspected in some useful way without crashing--this works
    as sort of a test of its somewhat complicated internal state management.

    This test does not check any of the results of
    `~inspect.classify_class_attrs`, though it might be useful to at some
    point.
    """

    inspect.classify_class_attrs(Gaussian1D + Gaussian1D)


def test_invalid_operands():
    """
    Test that certain operators do not work with models whose inputs/outputs do
    not match up correctly.
    """

    with pytest.raises(ModelDefinitionError):
        Rotation2D | Gaussian1D

    with pytest.raises(ModelDefinitionError):
        Rotation2D(90) | Gaussian1D(1, 0, 0.1)

    with pytest.raises(ModelDefinitionError):
        Rotation2D + Gaussian1D

    with pytest.raises(ModelDefinitionError):
        Rotation2D(90) + Gaussian1D(1, 0, 0.1)


class _ConstraintsTestA(Model):
    stddev = Parameter(default=0, min=0, max=0.3)
    mean = Parameter(default=0, fixed=True)

    @staticmethod
    def evaluate(stddev, mean):
        return stddev, mean


class _ConstraintsTestB(Model):
    mean = Parameter(default=0, fixed=True)

    @staticmethod
    def evaluate(mean):
        return mean


@pytest.mark.parametrize('model',
        [Gaussian1D(bounds={'stddev': (0, 0.3)}, fixed={'mean': True}) +
            Gaussian1D(fixed={'mean': True}),
         (_ConstraintsTestA + _ConstraintsTestB)()])
def test_inherit_constraints(model):
    """
    Various tests for copying of constraint values between compound models and
    their members.

    There are two versions of this test: One where a compound model is created
    from two model instances, and another where a compound model is created
    from two model classes that have default constraints set on some of their
    parameters.

    Regression test for https://github.com/astropy/astropy/issues/3481
    """

    # We have to copy the model before modifying it, otherwise the test fails
    # if it is run twice in a row, because the state of the model instance
    # would be preserved from one run to the next.
    model = deepcopy(model)

    # Lots of assertions in this test as there are multiple interfaces to
    # parameter constraints

    assert 'stddev_0' in model.bounds
    assert model.bounds['stddev_0'] == (0, 0.3)
    assert model.stddev_0.bounds == (0, 0.3)
    assert 'mean_0' in model.fixed
    assert model.fixed['mean_0'] is True
    assert model.mean_0.fixed is True
    assert 'mean_1' in model.fixed
    assert model.fixed['mean_1'] is True
    assert model.mean_1.fixed is True

    # Great, all the constraints were inherited properly
    # Now what about if we update them through the sub-models?
    model[0].stddev.bounds = (0, 0.4)
    assert model.bounds['stddev_0'] == (0, 0.4)
    assert model.stddev_0.bounds == (0, 0.4)
    assert model[0].stddev.bounds == (0, 0.4)
    assert model[0].bounds['stddev'] == (0, 0.4)

    model[0].bounds['stddev'] = (0.1, 0.5)
    assert model.bounds['stddev_0'] == (0.1, 0.5)
    assert model.stddev_0.bounds == (0.1, 0.5)
    assert model[0].stddev.bounds == (0.1, 0.5)
    assert model[0].bounds['stddev'] == (0.1, 0.5)

    model[1].mean.fixed = False
    assert model.fixed['mean_1'] is False
    assert model.mean_1.fixed is False
    assert model[1].mean.fixed is False
    assert model[1].fixed['mean'] is False

    model[1].fixed['mean'] = True
    assert model.fixed['mean_1'] is True
    assert model.mean_1.fixed is True
    assert model[1].mean.fixed is True
    assert model[1].fixed['mean'] is True


def test_compound_custom_inverse():
    """
    Test that a compound model with a custom inverse has that inverse applied
    when the inverse of another model, of which it is a component, is computed.
    Regression test for https://github.com/astropy/astropy/issues/3542
    """

    poly = Polynomial1D(1, c0=1, c1=2)
    scale = Scale(1)
    shift = Shift(1)

    model1 = poly | scale
    model1.inverse = poly

    # model1 now has a custom inverse (the polynomial itself, ignoring the
    # trivial scale factor)
    model2 = shift | model1

    assert_allclose(model2.inverse(1), (poly | shift.inverse)(1))

    # Make sure an inverse is not allowed if the models were combined with the
    # wrong operator, or if one of the models doesn't have an inverse defined
    with pytest.raises(NotImplementedError):
        (shift + model1).inverse

    with pytest.raises(NotImplementedError):
        (model1 & poly).inverse


@pytest.mark.parametrize('poly', [Chebyshev2D(1, 2), Polynomial2D(2), Legendre2D(1, 2),
                                  Chebyshev1D(5), Legendre1D(5), Polynomial1D(5)])
def test_compound_with_polynomials(poly):
    """
    Tests that polynomials are scaled when used in compound models.
    Issue #3699
    """
    poly.parameters = [1, 2, 3, 4, 1, 2]
    shift = Shift(3)
    model = poly | shift
    x, y = np.mgrid[:20, :37]
    result_compound = model(x, y)
    result = shift(poly(x, y))
    assert_allclose(result, result_compound)


# has to be defined at module level since pickling doesn't work right (in
# general) for classes defined in functions
class _TestPickleModel(Gaussian1D + Gaussian1D):
    pass


@pytest.mark.skipif(str("sys.version_info < (2, 7, 3)"))
def test_pickle_compound():
    """
    Regression test for
    https://github.com/astropy/astropy/issues/3867#issuecomment-114547228
    """

    # Test pickling a compound model class
    GG = Gaussian1D + Gaussian1D
    GG2 = pickle.loads(pickle.dumps(GG))
    assert GG.param_names == GG2.param_names
    assert GG.__name__ == GG2.__name__
    # Test that it works, or at least evaluates successfully
    assert GG()(0.12345) == GG2()(0.12345)

    # Test pickling a compound model instance
    g1 = Gaussian1D(1.0, 0.0, 0.1)
    g2 = Gaussian1D([2.0, 3.0], [0.0, 0.0], [0.2, 0.3])
    m = g1 + g2
    m2 = pickle.loads(pickle.dumps(m))
    assert m.param_names == m2.param_names
    assert m.__class__.__name__ == m2.__class__.__name__
    assert np.all(m.parameters == m2.parameters)
    assert np.all(m(0) == m2(0))

    # Test pickling a concrete class
    p = pickle.dumps(_TestPickleModel, protocol=0)
    # Note: This is very dependent on the specific protocol, but the point of
    # this test is that the "concrete" model is pickled in a very simple way
    # that only specifies the module and class name, and is unpickled by
    # re-importing the class from the module in which it was defined.  This
    # should still work for concrete subclasses of compound model classes that
    # were dynamically generated through an expression
    exp = b'castropy.modeling.tests.test_compound\n_TestPickleModel\np0\n.'
    # When testing against the expected value we drop the memo length field
    # at the end, which may differ between runs
    assert p[:p.rfind(b'p')] == exp[:exp.rfind(b'p')]
    assert pickle.loads(p) is _TestPickleModel


@pytest.mark.skipif(str("sys.version_info >= (2, 7, 3)"))
def test_pickle_compound_fallback():
    """
    Test fallback for pickling compound model on old versions of Python
    affected by http://bugs.python.org/issue7689
    """

    gg = (Gaussian1D + Gaussian1D)()
    with pytest.raises(RuntimeError):
        pickle.dumps(gg)