1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import numpy as np
from numpy.testing.utils import assert_allclose
from ..core import Model, InputParameterError, custom_model
from ..parameters import Parameter
from .. import models
from ...tests.helper import pytest, catch_warnings
from ...utils.compat.funcsigs import signature
from ...utils.exceptions import AstropyDeprecationWarning
class NonFittableModel(Model):
"""An example class directly subclassing Model for testing."""
a = Parameter()
def __init__(self, a, model_set_axis=None):
super(NonFittableModel, self).__init__(
a, model_set_axis=model_set_axis)
@staticmethod
def evaluate():
pass
def test_Model_instance_repr_and_str():
m = NonFittableModel(42)
assert repr(m) == "<NonFittableModel(a=42.0)>"
assert (str(m) ==
"Model: NonFittableModel\n"
"Inputs: ()\n"
"Outputs: ()\n"
"Model set size: 1\n"
"Parameters:\n"
" a \n"
" ----\n"
" 42.0")
assert len(m) == 1
def test_Model_array_parameter():
model = models.Gaussian1D(4, 2, 1)
assert_allclose(model.param_sets, [[4], [2], [1]])
def test_inputless_model():
"""
Regression test for
https://github.com/astropy/astropy/pull/3772#issuecomment-101821641
"""
class TestModel(Model):
inputs = ()
outputs = ('y',)
a = Parameter()
@staticmethod
def evaluate(a):
return a
m = TestModel(1)
assert m.a == 1
assert m() == 1
# Test array-like output
m = TestModel([1, 2, 3], model_set_axis=False)
assert len(m) == 1
assert np.all(m() == [1, 2, 3])
# Test a model set
m = TestModel(a=[1, 2, 3], model_set_axis=0)
assert len(m) == 3
assert np.all(m() == [1, 2, 3])
# Test a model set
m = TestModel(a=[[1, 2, 3], [4, 5, 6]], model_set_axis=0)
assert len(m) == 2
assert np.all(m() == [[1, 2, 3], [4, 5, 6]])
def test_ParametericModel():
with pytest.raises(TypeError):
models.Gaussian1D(1, 2, 3, wrong=4)
def test_custom_model_signature():
"""
Tests that the signatures for the __init__ and __call__
methods of custom models are useful.
"""
@custom_model
def model_a(x):
return x
assert model_a.param_names == ()
assert model_a.n_inputs == 1
sig = signature(model_a.__init__)
assert list(sig.parameters.keys()) == ['self', 'args', 'kwargs']
sig = signature(model_a.__call__)
assert list(sig.parameters.keys()) == ['self', 'x', 'model_set_axis']
@custom_model
def model_b(x, a=1, b=2):
return x + a + b
assert model_b.param_names == ('a', 'b')
assert model_b.n_inputs == 1
sig = signature(model_b.__init__)
assert list(sig.parameters.keys()) == ['self', 'a', 'b', 'kwargs']
assert [x.default for x in sig.parameters.values()] == [sig.empty, 1, 2, sig.empty]
sig = signature(model_b.__call__)
assert list(sig.parameters.keys()) == ['self', 'x', 'model_set_axis']
@custom_model
def model_c(x, y, a=1, b=2):
return x + y + a + b
assert model_c.param_names == ('a', 'b')
assert model_c.n_inputs == 2
sig = signature(model_c.__init__)
assert list(sig.parameters.keys()) == ['self', 'a', 'b', 'kwargs']
assert [x.default for x in sig.parameters.values()] == [sig.empty, 1, 2, sig.empty]
sig = signature(model_c.__call__)
assert list(sig.parameters.keys()) == ['self', 'x', 'y', 'model_set_axis']
def test_custom_model_subclass():
"""Test that custom models can be subclassed."""
@custom_model
def model_a(x, a=1):
return x * a
class model_b(model_a):
# Override the evaluate from model_a
@classmethod
def evaluate(cls, x, a):
return -super(model_b, cls).evaluate(x, a)
b = model_b()
assert b.param_names == ('a',)
assert b.a == 1
assert b(1) == -1
sig = signature(model_b.__init__)
assert list(sig.parameters.keys()) == ['self', 'a', 'kwargs']
sig = signature(model_b.__call__)
assert list(sig.parameters.keys()) == ['self', 'x', 'model_set_axis']
def test_custom_model_parametrized_decorator():
"""Tests using custom_model as a decorator with parameters."""
def cosine(x, amplitude=1):
return [amplitude * np.cos(x)]
@custom_model(fit_deriv=cosine)
def sine(x, amplitude=1):
return amplitude * np.sin(x)
assert issubclass(sine, Model)
s = sine(2)
assert_allclose(s(np.pi / 2), 2)
assert_allclose(s.fit_deriv(0, 2), 2)
def test_custom_inverse():
"""Test setting a custom inverse on a model."""
p = models.Polynomial1D(1, c0=-2, c1=3)
# A trivial inverse for a trivial polynomial
inv = models.Polynomial1D(1, c0=(2./3.), c1=(1./3.))
with pytest.raises(NotImplementedError):
p.inverse
p.inverse = inv
x = np.arange(100)
assert_allclose(x, p(p.inverse(x)))
assert_allclose(x, p.inverse(p(x)))
with catch_warnings(AstropyDeprecationWarning) as w:
p.inverse = None
# TODO: This can be removed after Astropy v1.1 or so
assert len(w) == 1
with pytest.raises(NotImplementedError):
p.inverse
def test_custom_inverse_reset():
"""Test resetting a custom inverse to the model's default inverse."""
class TestModel(Model):
inputs = ()
outputs = ('y',)
@property
def inverse(self):
return models.Shift()
@staticmethod
def evaluate():
return 0
# The above test model has no meaning, nor does its inverse--this just
# tests that setting an inverse and resetting to the default inverse works
m = TestModel()
assert isinstance(m.inverse, models.Shift)
m.inverse = models.Scale()
assert isinstance(m.inverse, models.Scale)
del m.inverse
assert isinstance(m.inverse, models.Shift)
def test_render_model_2d():
imshape = (71, 141)
image = np.zeros(imshape)
coords = y, x = np.indices(imshape)
model = models.Gaussian2D(x_stddev=6.1, y_stddev=3.9, theta=np.pi / 3)
# test points for edges
ye, xe = [0, 35, 70], [0, 70, 140]
# test points for floating point positions
yf, xf = [35.1, 35.5, 35.9], [70.1, 70.5, 70.9]
test_pts = [(a, b) for a in xe for b in ye]
test_pts += [(a, b) for a in xf for b in yf]
for x0, y0 in test_pts:
model.x_mean = x0
model.y_mean = y0
expected = model(x, y)
for xy in [coords, None]:
for im in [image.copy(), None]:
if (im is None) & (xy is None):
# this case is tested in Fittable2DModelTester
continue
actual = model.render(out=im, coords=xy)
if im is None:
assert_allclose(actual, model.render(coords=xy))
# assert images match
assert_allclose(expected, actual, atol=3e-7)
# assert model fully captured
if (x0, y0) == (70, 35):
boxed = model.render()
flux = np.sum(expected)
assert ((flux - np.sum(boxed)) / flux) < 1e-7
# test an error is raised when the bounding box is larger than the input array
try:
actual = model.render(out=np.zeros((1, 1)))
except ValueError:
pass
def test_render_model_1d():
npix = 101
image = np.zeros(npix)
coords = np.arange(npix)
model = models.Gaussian1D()
# test points
test_pts = [0, 49.1, 49.5, 49.9, 100]
# test widths
test_stdv = np.arange(5.5, 6.7, .2)
for x0, stdv in [(p, s) for p in test_pts for s in test_stdv]:
model.mean = x0
model.stddev = stdv
expected = model(coords)
for x in [coords, None]:
for im in [image.copy(), None]:
if (im is None) & (x is None):
# this case is tested in Fittable1DModelTester
continue
actual = model.render(out=im, coords=x)
# assert images match
assert_allclose(expected, actual, atol=3e-7)
# assert model fully captured
if (x0, stdv) == (49.5, 5.5):
boxed = model.render()
flux = np.sum(expected)
assert ((flux - np.sum(boxed)) / flux) < 1e-7
def test_render_model_3d():
imshape = (17, 21, 27)
image = np.zeros(imshape)
coords = np.indices(imshape)
def ellipsoid(x, y, z, x0=13., y0=10., z0=8., a=4., b=3., c=2., amp=1.):
rsq = ((x - x0) / a) ** 2 + ((y - y0) / b) ** 2 + ((z - z0) / c) ** 2
val = (rsq < 1) * amp
return val
class Ellipsoid3D(custom_model(ellipsoid)):
@property
def bounding_box(self):
return ((self.z0 - self.c, self.z0 + self.c),
(self.y0 - self.b, self.y0 + self.b),
(self.x0 - self.a, self.x0 + self.a))
model = Ellipsoid3D()
# test points for edges
ze, ye, xe = [0, 8, 16], [0, 10, 20], [0, 13, 26]
# test points for floating point positions
zf, yf, xf = [8.1, 8.5, 8.9], [10.1, 10.5, 10.9], [13.1, 13.5, 13.9]
test_pts = [(x, y, z) for x in xe for y in ye for z in ze]
test_pts += [(x, y, z) for x in xf for y in yf for z in zf]
for x0, y0, z0 in test_pts:
model.x0 = x0
model.y0 = y0
model.z0 = z0
expected = model(*coords[::-1])
for c in [coords, None]:
for im in [image.copy(), None]:
if (im is None) & (c is None):
continue
actual = model.render(out=im, coords=c)
boxed = model.render()
# assert images match
assert_allclose(expected, actual)
# assert model fully captured
if (z0, y0, x0) == (8, 10, 13):
boxed = model.render()
assert (np.sum(expected) - np.sum(boxed)) == 0
|