1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module tests fitting and model evaluation with various inputs
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import numpy as np
from numpy.testing.utils import assert_allclose
from .. import models
from .. import fitting
from ..core import Model, FittableModel, Fittable1DModel
from ..parameters import Parameter
from ...tests.helper import pytest
from ...extern.six.moves import range
try:
from scipy import optimize # pylint: disable=W0611
HAS_SCIPY = True
except ImportError:
HAS_SCIPY = False
model1d_params = [
(models.Polynomial1D, [2]),
(models.Legendre1D, [2]),
(models.Chebyshev1D, [2]),
(models.Shift, [2]),
(models.Scale, [2])
]
model2d_params = [
(models.Polynomial2D, [2]),
(models.Legendre2D, [1, 2]),
(models.Chebyshev2D, [1, 2])
]
class TestInputType(object):
"""
This class tests that models accept numbers, lists and arrays.
Add new models to one of the lists above to test for this.
"""
def setup_class(self):
self.x = 5.3
self.y = 6.7
self.x1 = np.arange(1, 10, .1)
self.y1 = np.arange(1, 10, .1)
self.y2, self.x2 = np.mgrid[:10, :8]
@pytest.mark.parametrize(('model', 'params'), model1d_params)
def test_input1D(self, model, params):
m = model(*params)
m(self.x)
m(self.x1)
m(self.x2)
@pytest.mark.parametrize(('model', 'params'), model2d_params)
def test_input2D(self, model, params):
m = model(*params)
m(self.x, self.y)
m(self.x1, self.y1)
m(self.x2, self.y2)
class TestFitting(object):
"""Test various input options to fitting routines."""
def setup_class(self):
self.x1 = np.arange(10)
self.y, self.x = np.mgrid[:10, :10]
def test_linear_fitter_1set(self):
"""1 set 1D x, 1pset"""
expected = np.array([0, 1, 1, 1])
p1 = models.Polynomial1D(3)
p1.parameters = [0, 1, 1, 1]
y1 = p1(self.x1)
pfit = fitting.LinearLSQFitter()
model = pfit(p1, self.x1, y1)
assert_allclose(model.parameters, expected, atol=10 ** (-7))
def test_linear_fitter_Nset(self):
"""1 set 1D x, 2 sets 1D y, 2 param_sets"""
expected = np.array([[0, 0], [1, 1], [2, 2], [3, 3]])
p1 = models.Polynomial1D(3, n_models=2)
p1.parameters = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0]
params = {}
for i in range(4):
params[p1.param_names[i]] = [i, i]
p1 = models.Polynomial1D(3, model_set_axis=0, **params)
y1 = p1(self.x1, model_set_axis=False)
pfit = fitting.LinearLSQFitter()
model = pfit(p1, self.x1, y1)
assert_allclose(model.param_sets, expected, atol=10 ** (-7))
def test_linear_fitter_1dcheb(self):
"""1 pset, 1 set 1D x, 1 set 1D y, Chebyshev 1D polynomial"""
expected = np.array(
[[2817.2499999999995,
4226.6249999999991,
1680.7500000000009,
273.37499999999926]]).T
ch1 = models.Chebyshev1D(3)
ch1.parameters = [0, 1, 2, 3]
y1 = ch1(self.x1)
pfit = fitting.LinearLSQFitter()
model = pfit(ch1, self.x1, y1)
assert_allclose(model.param_sets, expected, atol=10 ** (-2))
def test_linear_fitter_1dlegend(self):
"""
1 pset, 1 set 1D x, 1 set 1D y, Legendre 1D polynomial
"""
expected = np.array(
[[1925.5000000000011,
3444.7500000000005,
1883.2500000000014,
364.4999999999996]]).T
leg1 = models.Legendre1D(3)
leg1.parameters = [1, 2, 3, 4]
y1 = leg1(self.x1)
pfit = fitting.LinearLSQFitter()
model = pfit(leg1, self.x1, y1)
assert_allclose(model.param_sets, expected, atol=10 ** (-12))
def test_linear_fitter_1set2d(self):
p2 = models.Polynomial2D(2)
p2.parameters = [0, 1, 2, 3, 4, 5]
expected = [0, 1, 2, 3, 4, 5]
z = p2(self.x, self.y)
pfit = fitting.LinearLSQFitter()
model = pfit(p2, self.x, self.y, z)
assert_allclose(model.parameters, expected, atol=10 ** (-12))
assert_allclose(model(self.x, self.y), z, atol=10 ** (-12))
def test_wrong_numpset(self):
"""
A ValueError is raised if a 1 data set (1d x, 1d y) is fit
with a model with multiple parameter sets.
"""
with pytest.raises(ValueError):
p1 = models.Polynomial1D(5)
y1 = p1(self.x1)
p1 = models.Polynomial1D(5, n_models=2)
pfit = fitting.LinearLSQFitter()
model = pfit(p1, self.x1, y1)
def test_wrong_pset(self):
"""A case of 1 set of x and multiple sets of y and parameters."""
expected = np.array([[1., 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4],
[1, 5]])
p1 = models.Polynomial1D(5, n_models=2)
params = {}
for i in range(6):
params[p1.param_names[i]] = [1, i]
p1 = models.Polynomial1D(5, model_set_axis=0, **params)
y1 = p1(self.x1, model_set_axis=False)
pfit = fitting.LinearLSQFitter()
model = pfit(p1, self.x1, y1)
assert_allclose(model.param_sets, expected, atol=10 ** (-7))
@pytest.mark.skipif('not HAS_SCIPY')
def test_nonlinear_lsqt_1set_1d(self):
"""1 set 1D x, 1 set 1D y, 1 pset NonLinearFitter"""
g1 = models.Gaussian1D(10, mean=3, stddev=.2)
y1 = g1(self.x1)
gfit = fitting.LevMarLSQFitter()
model = gfit(g1, self.x1, y1)
assert_allclose(model.parameters, [10, 3, .2])
@pytest.mark.skipif('not HAS_SCIPY')
def test_nonlinear_lsqt_Nset_1d(self):
"""1 set 1D x, 1 set 1D y, 2 param_sets, NonLinearFitter"""
with pytest.raises(ValueError):
g1 = models.Gaussian1D([10.2, 10], mean=[3, 3.2], stddev=[.23, .2],
n_models=2)
y1 = g1(self.x1, model_set_axis=False)
gfit = fitting.LevMarLSQFitter()
model = gfit(g1, self.x1, y1)
@pytest.mark.skipif('not HAS_SCIPY')
def test_nonlinear_lsqt_1set_2d(self):
"""1 set 2d x, 1set 2D y, 1 pset, NonLinearFitter"""
g2 = models.Gaussian2D(10, x_mean=3, y_mean=4, x_stddev=.3,
y_stddev=.2, theta=0)
z = g2(self.x, self.y)
gfit = fitting.LevMarLSQFitter()
model = gfit(g2, self.x, self.y, z)
assert_allclose(model.parameters, [10, 3, 4, .3, .2, 0])
@pytest.mark.skipif('not HAS_SCIPY')
def test_nonlinear_lsqt_Nset_2d(self):
"""1 set 2d x, 1set 2D y, 2 param_sets, NonLinearFitter"""
with pytest.raises(ValueError):
g2 = models.Gaussian2D([10, 10], [3, 3], [4, 4], x_stddev=[.3, .3],
y_stddev=[.2, .2], theta=[0, 0], n_models=2)
z = g2(self.x.flatten(), self.y.flatten())
gfit = fitting.LevMarLSQFitter()
model = gfit(g2, self.x, self.y, z)
class TestEvaluation(object):
"""
Test various input options to model evaluation
TestFitting actually covers evaluation of polynomials
"""
def setup_class(self):
self.x1 = np.arange(20)
self.y, self.x = np.mgrid[:10, :10]
def test_non_linear_NYset(self):
"""
This case covers:
N param sets , 1 set 1D x --> N 1D y data
"""
g1 = models.Gaussian1D([10, 10], [3, 3], [.2, .2], n_models=2)
y1 = g1(self.x1, model_set_axis=False)
assert np.all((y1[0, :] - y1[1, :]).nonzero() == np.array([]))
def test_non_linear_NXYset(self):
"""
This case covers: N param sets , N sets 1D x --> N N sets 1D y data
"""
g1 = models.Gaussian1D([10, 10], [3, 3], [.2, .2], n_models=2)
xx = np.array([self.x1, self.x1])
y1 = g1(xx)
assert_allclose(y1[:, 0], y1[:, 1], atol=10 ** (-12))
def test_p1_1set_1pset(self):
"""1 data set, 1 pset, Polynomial1D"""
p1 = models.Polynomial1D(4)
y1 = p1(self.x1)
assert y1.shape == (20,)
def test_p1_nset_npset(self):
"""N data sets, N param_sets, Polynomial1D"""
p1 = models.Polynomial1D(4, n_models=2)
y1 = p1(np.array([self.x1, self.x1]).T, model_set_axis=-1)
assert y1.shape == (2, 20)
assert_allclose(y1[0, :], y1[1, :], atol=10 ** (-12))
def test_p2_1set_1pset(self):
"""1 pset, 1 2D data set, Polynomial2D"""
p2 = models.Polynomial2D(5)
z = p2(self.x, self.y)
assert z.shape == (10, 10)
def test_p2_nset_npset(self):
"""N param_sets, N 2D data sets, Poly2d"""
p2 = models.Polynomial2D(5, n_models=2)
xx = np.array([self.x, self.x])
yy = np.array([self.y, self.y])
z = p2(xx, yy)
assert z.shape == (2, 10, 10)
def test_nset_domain(self):
"""
Polynomial evaluation of multiple data sets with different domain
"""
xx = np.array([self.x1, self.x1]).T
xx[0, 0] = 100
xx[1, 0] = 100
xx[2, 0] = 99
p1 = models.Polynomial1D(5, n_models=2)
yy = p1(xx, model_set_axis=-1)
x1 = xx[:, 0]
x2 = xx[:, 1]
p1 = models.Polynomial1D(5)
assert_allclose(p1(x1), yy[0, :], atol=10 ** (-12))
p1 = models.Polynomial1D(5)
assert_allclose(p1(x2), yy[1, :], atol=10 ** (-12))
def test_evaluate_gauss2d(self):
cov = np.array([[1., 0.8], [0.8, 3]])
g = models.Gaussian2D(1., 5., 4., cov_matrix=cov)
y, x = np.mgrid[:10, :10]
g(x, y)
class TModel_1_1(Fittable1DModel):
p1 = Parameter()
p2 = Parameter()
@staticmethod
def evaluate(x, p1, p2):
return x + p1 + p2
class TestSingleInputSingleOutputSingleModel(object):
"""
A suite of tests to check various cases of parameter and input combinations
on models with n_input = n_output = 1 on a toy model with n_models=1.
Many of these tests mirror test cases in
``astropy.modeling.tests.test_parameters.TestParameterInitialization``,
except that this tests how different parameter arrangements interact with
different types of model inputs.
"""
def test_scalar_parameters_scalar_input(self):
"""
Scalar parameters with a scalar input should return a scalar.
"""
t = TModel_1_1(1, 10)
y = t(100)
assert isinstance(y, float)
assert np.ndim(y) == 0
assert y == 111
def test_scalar_parameters_1d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_1(1, 10)
y = t(np.arange(5) * 100)
assert isinstance(y, np.ndarray)
assert np.shape(y) == (5,)
assert np.all(y == [11, 111, 211, 311, 411])
def test_scalar_parameters_2d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_1(1, 10)
y = t(np.arange(6).reshape(2, 3) * 100)
assert isinstance(y, np.ndarray)
assert np.shape(y) == (2, 3)
assert np.all(y == [[11, 111, 211],
[311, 411, 511]])
def test_scalar_parameters_3d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_1(1, 10)
y = t(np.arange(12).reshape(2, 3, 2) * 100)
assert isinstance(y, np.ndarray)
assert np.shape(y) == (2, 3, 2)
assert np.all(y == [[[11, 111], [211, 311], [411, 511]],
[[611, 711], [811, 911], [1011, 1111]]])
def test_1d_array_parameters_scalar_input(self):
"""
Array parameters should all be broadcastable with each other, and with
a scalar input the output should be broadcast to the maximum dimensions
of the parameters.
"""
t = TModel_1_1([1, 2], [10, 20])
y = t(100)
assert isinstance(y, np.ndarray)
assert np.shape(y) == (2,)
assert np.all(y == [111, 122])
def test_1d_array_parameters_1d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_1([1, 2], [10, 20])
y1 = t([100, 200])
assert np.shape(y1) == (2,)
assert np.all(y1 == [111, 222])
y2 = t([[100], [200]])
assert np.shape(y2) == (2, 2)
assert np.all(y2 == [[111, 122], [211, 222]])
with pytest.raises(ValueError):
# Doesn't broadcast
y3 = t([100, 200, 300])
def test_2d_array_parameters_2d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_1([[1, 2], [3, 4]], [[10, 20], [30, 40]])
y1 = t([[100, 200], [300, 400]])
assert np.shape(y1) == (2, 2)
assert np.all(y1 == [[111, 222], [333, 444]])
y2 = t([[[[100]], [[200]]], [[[300]], [[400]]]])
assert np.shape(y2) == (2, 2, 2, 2)
assert np.all(y2 == [[[[111, 122], [133, 144]],
[[211, 222], [233, 244]]],
[[[311, 322], [333, 344]],
[[411, 422], [433, 444]]]])
with pytest.raises(ValueError):
# Doesn't broadcast
y3 = t([[100, 200, 300], [400, 500, 600]])
def test_mixed_array_parameters_1d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_1([[[0.01, 0.02, 0.03], [0.04, 0.05, 0.06]],
[[0.07, 0.08, 0.09], [0.10, 0.11, 0.12]]],
[1, 2, 3])
y1 = t([10, 20, 30])
assert np.shape(y1) == (2, 2, 3)
assert_allclose(y1, [[[11.01, 22.02, 33.03], [11.04, 22.05, 33.06]],
[[11.07, 22.08, 33.09], [11.10, 22.11, 33.12]]])
y2 = t([[[[10]]], [[[20]]], [[[30]]]])
assert np.shape(y2) == (3, 2, 2, 3)
assert_allclose(y2, [[[[11.01, 12.02, 13.03],
[11.04, 12.05, 13.06]],
[[11.07, 12.08, 13.09],
[11.10, 12.11, 13.12]]],
[[[21.01, 22.02, 23.03],
[21.04, 22.05, 23.06]],
[[21.07, 22.08, 23.09],
[21.10, 22.11, 23.12]]],
[[[31.01, 32.02, 33.03],
[31.04, 32.05, 33.06]],
[[31.07, 32.08, 33.09],
[31.10, 32.11, 33.12]]]])
class TestSingleInputSingleOutputTwoModel(object):
"""
A suite of tests to check various cases of parameter and input combinations
on models with n_input = n_output = 1 on a toy model with n_models=2.
Many of these tests mirror test cases in
``astropy.modeling.tests.test_parameters.TestParameterInitialization``,
except that this tests how different parameter arrangements interact with
different types of model inputs.
With n_models=2 all outputs should have a first dimension of size 2 (unless
defined with model_set_axis != 0).
"""
def test_scalar_parameters_scalar_input(self):
"""
Scalar parameters with a scalar input should return a 1-D array with
size equal to the number of models.
"""
t = TModel_1_1([1, 2], [10, 20], n_models=2)
y = t(100)
assert np.shape(y) == (2,)
assert np.all(y == [111, 122])
def test_scalar_parameters_1d_array_input(self):
"""
The dimension of the input should match the number of models unless
model_set_axis=False is given, in which case the input is copied across
all models.
"""
t = TModel_1_1([1, 2], [10, 20], n_models=2)
with pytest.raises(ValueError):
y = t(np.arange(5) * 100)
y1 = t([100, 200])
assert np.shape(y1) == (2,)
assert np.all(y1 == [111, 222])
y2 = t([100, 200], model_set_axis=False)
# In this case the value [100, 200, 300] should be evaluated on each
# model rather than evaluating the first model with 100 and the second
# model with 200
assert np.shape(y2) == (2, 2)
assert np.all(y2 == [[111, 211], [122, 222]])
y3 = t([100, 200, 300], model_set_axis=False)
assert np.shape(y3) == (2, 3)
assert np.all(y3 == [[111, 211, 311], [122, 222, 322]])
def test_scalar_parameters_2d_array_input(self):
"""
The dimension of the input should match the number of models unless
model_set_axis=False is given, in which case the input is copied across
all models.
"""
t = TModel_1_1([1, 2], [10, 20], n_models=2)
y1 = t(np.arange(6).reshape(2, 3) * 100)
assert np.shape(y1) == (2, 3)
assert np.all(y1 == [[11, 111, 211],
[322, 422, 522]])
y2 = t(np.arange(6).reshape(2, 3) * 100, model_set_axis=False)
assert np.shape(y2) == (2, 2, 3)
assert np.all(y2 == [[[11, 111, 211], [311, 411, 511]],
[[22, 122, 222], [322, 422, 522]]])
def test_scalar_parameters_3d_array_input(self):
"""
The dimension of the input should match the number of models unless
model_set_axis=False is given, in which case the input is copied across
all models.
"""
t = TModel_1_1([1, 2], [10, 20], n_models=2)
data = np.arange(12).reshape(2, 3, 2) * 100
y1 = t(data)
assert np.shape(y1) == (2, 3, 2)
assert np.all(y1 == [[[11, 111], [211, 311], [411, 511]],
[[622, 722], [822, 922], [1022, 1122]]])
y2 = t(data, model_set_axis=False)
assert np.shape(y2) == (2, 2, 3, 2)
assert np.all(y2 == np.array([data + 11, data + 22]))
def test_1d_array_parameters_scalar_input(self):
"""
Array parameters should all be broadcastable with each other, and with
a scalar input the output should be broadcast to the maximum dimensions
of the parameters.
"""
t = TModel_1_1([[1, 2, 3], [4, 5, 6]],
[[10, 20, 30], [40, 50, 60]], n_models=2)
y = t(100)
assert np.shape(y) == (2, 3)
assert np.all(y == [[111, 122, 133], [144, 155, 166]])
def test_1d_array_parameters_1d_array_input(self):
"""
When the input is an array, if model_set_axis=False then it must
broadcast with the shapes of the parameters (excluding the
model_set_axis).
Otherwise all dimensions must be broadcastable.
"""
t = TModel_1_1([[1, 2, 3], [4, 5, 6]],
[[10, 20, 30], [40, 50, 60]], n_models=2)
with pytest.raises(ValueError):
y1 = t([100, 200, 300])
y1 = t([100, 200])
assert np.shape(y1) == (2, 3)
assert np.all(y1 == [[111, 122, 133], [244, 255, 266]])
with pytest.raises(ValueError):
# Doesn't broadcast with the shape of the parameters, (3,)
y2 = t([100, 200], model_set_axis=False)
y2 = t([100, 200, 300], model_set_axis=False)
assert np.shape(y2) == (2, 3)
assert np.all(y2 == [[111, 222, 333],
[144, 255, 366]])
def test_2d_array_parameters_2d_array_input(self):
t = TModel_1_1([[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[10, 20], [30, 40]], [[50, 60], [70, 80]]],
n_models=2)
y1 = t([[100, 200], [300, 400]])
assert np.shape(y1) == (2, 2, 2)
assert np.all(y1 == [[[111, 222], [133, 244]],
[[355, 466], [377, 488]]])
with pytest.raises(ValueError):
y2 = t([[100, 200, 300], [400, 500, 600]])
y2 = t([[[100, 200], [300, 400]], [[500, 600], [700, 800]]])
assert np.shape(y2) == (2, 2, 2)
assert np.all(y2 == [[[111, 222], [333, 444]],
[[555, 666], [777, 888]]])
def test_mixed_array_parameters_1d_array_input(self):
t = TModel_1_1([[[0.01, 0.02, 0.03], [0.04, 0.05, 0.06]],
[[0.07, 0.08, 0.09], [0.10, 0.11, 0.12]]],
[[1, 2, 3], [4, 5, 6]], n_models=2)
with pytest.raises(ValueError):
y = t([10, 20, 30])
y = t([10, 20, 30], model_set_axis=False)
assert np.shape(y) == (2, 2, 3)
assert_allclose(y, [[[11.01, 22.02, 33.03], [11.04, 22.05, 33.06]],
[[14.07, 25.08, 36.09], [14.10, 25.11, 36.12]]])
class TModel_1_2(FittableModel):
inputs = ('x',)
outputs = ('y', 'z')
p1 = Parameter()
p2 = Parameter()
p3 = Parameter()
@staticmethod
def evaluate(x, p1, p2, p3):
return (x + p1 + p2, x + p1 + p2 + p3)
class TestSingleInputDoubleOutputSingleModel(object):
"""
A suite of tests to check various cases of parameter and input combinations
on models with n_input = 1 but n_output = 2 on a toy model with n_models=1.
As of writing there are not enough controls to adjust how outputs from such
a model should be formatted (currently the shapes of outputs are assumed to
be directly associated with the shapes of corresponding inputs when
n_inputs == n_outputs). For now, the approach taken for cases like this is
to assume all outputs should have the same format.
"""
def test_scalar_parameters_scalar_input(self):
"""
Scalar parameters with a scalar input should return a scalar.
"""
t = TModel_1_2(1, 10, 1000)
y, z = t(100)
assert isinstance(y, float)
assert isinstance(z, float)
assert np.ndim(y) == np.ndim(z) == 0
assert y == 111
assert z == 1111
def test_scalar_parameters_1d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_2(1, 10, 1000)
y, z = t(np.arange(5) * 100)
assert isinstance(y, np.ndarray)
assert isinstance(z, np.ndarray)
assert np.shape(y) == np.shape(z) == (5,)
assert np.all(y == [11, 111, 211, 311, 411])
assert np.all(z == (y + 1000))
def test_scalar_parameters_2d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_2(1, 10, 1000)
y, z = t(np.arange(6).reshape(2, 3) * 100)
assert isinstance(y, np.ndarray)
assert isinstance(z, np.ndarray)
assert np.shape(y) == np.shape(z) == (2, 3)
assert np.all(y == [[11, 111, 211],
[311, 411, 511]])
assert np.all(z == (y + 1000))
def test_scalar_parameters_3d_array_input(self):
"""
Scalar parameters should broadcast with an array input to result in an
array output of the same shape as the input.
"""
t = TModel_1_2(1, 10, 1000)
y, z = t(np.arange(12).reshape(2, 3, 2) * 100)
assert isinstance(y, np.ndarray)
assert isinstance(z, np.ndarray)
assert np.shape(y) == np.shape(z) == (2, 3, 2)
assert np.all(y == [[[11, 111], [211, 311], [411, 511]],
[[611, 711], [811, 911], [1011, 1111]]])
assert np.all(z == (y + 1000))
def test_1d_array_parameters_scalar_input(self):
"""
Array parameters should all be broadcastable with each other, and with
a scalar input the output should be broadcast to the maximum dimensions
of the parameters.
"""
t = TModel_1_2([1, 2], [10, 20], [1000, 2000])
y, z = t(100)
assert isinstance(y, np.ndarray)
assert isinstance(z, np.ndarray)
assert np.shape(y) == np.shape(z) == (2,)
assert np.all(y == [111, 122])
assert np.all(z == [1111, 2122])
def test_1d_array_parameters_1d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_2([1, 2], [10, 20], [1000, 2000])
y1, z1 = t([100, 200])
assert np.shape(y1) == np.shape(z1) == (2,)
assert np.all(y1 == [111, 222])
assert np.all(z1 == [1111, 2222])
y2, z2 = t([[100], [200]])
assert np.shape(y2) == np.shape(z2) == (2, 2)
assert np.all(y2 == [[111, 122], [211, 222]])
assert np.all(z2 == [[1111, 2122], [1211, 2222]])
with pytest.raises(ValueError):
# Doesn't broadcast
y3, z3 = t([100, 200, 300])
def test_2d_array_parameters_2d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_2([[1, 2], [3, 4]], [[10, 20], [30, 40]],
[[1000, 2000], [3000, 4000]])
y1, z1 = t([[100, 200], [300, 400]])
assert np.shape(y1) == np.shape(z1) == (2, 2)
assert np.all(y1 == [[111, 222], [333, 444]])
assert np.all(z1 == [[1111, 2222], [3333, 4444]])
y2, z2 = t([[[[100]], [[200]]], [[[300]], [[400]]]])
assert np.shape(y2) == np.shape(z2) == (2, 2, 2, 2)
assert np.all(y2 == [[[[111, 122], [133, 144]],
[[211, 222], [233, 244]]],
[[[311, 322], [333, 344]],
[[411, 422], [433, 444]]]])
assert np.all(z2 == [[[[1111, 2122], [3133, 4144]],
[[1211, 2222], [3233, 4244]]],
[[[1311, 2322], [3333, 4344]],
[[1411, 2422], [3433, 4444]]]])
with pytest.raises(ValueError):
# Doesn't broadcast
y3, z3 = t([[100, 200, 300], [400, 500, 600]])
def test_mixed_array_parameters_1d_array_input(self):
"""
When given an array input it must be broadcastable with all the
parameters.
"""
t = TModel_1_2([[[0.01, 0.02, 0.03], [0.04, 0.05, 0.06]],
[[0.07, 0.08, 0.09], [0.10, 0.11, 0.12]]],
[1, 2, 3], [100, 200, 300])
y1, z1 = t([10, 20, 30])
assert np.shape(y1) == np.shape(z1) == (2, 2, 3)
assert_allclose(y1, [[[11.01, 22.02, 33.03], [11.04, 22.05, 33.06]],
[[11.07, 22.08, 33.09], [11.10, 22.11, 33.12]]])
assert_allclose(z1, [[[111.01, 222.02, 333.03],
[111.04, 222.05, 333.06]],
[[111.07, 222.08, 333.09],
[111.10, 222.11, 333.12]]])
y2, z2 = t([[[[10]]], [[[20]]], [[[30]]]])
assert np.shape(y2) == np.shape(z2) == (3, 2, 2, 3)
assert_allclose(y2, [[[[11.01, 12.02, 13.03],
[11.04, 12.05, 13.06]],
[[11.07, 12.08, 13.09],
[11.10, 12.11, 13.12]]],
[[[21.01, 22.02, 23.03],
[21.04, 22.05, 23.06]],
[[21.07, 22.08, 23.09],
[21.10, 22.11, 23.12]]],
[[[31.01, 32.02, 33.03],
[31.04, 32.05, 33.06]],
[[31.07, 32.08, 33.09],
[31.10, 32.11, 33.12]]]])
assert_allclose(z2, [[[[111.01, 212.02, 313.03],
[111.04, 212.05, 313.06]],
[[111.07, 212.08, 313.09],
[111.10, 212.11, 313.12]]],
[[[121.01, 222.02, 323.03],
[121.04, 222.05, 323.06]],
[[121.07, 222.08, 323.09],
[121.10, 222.11, 323.12]]],
[[[131.01, 232.02, 333.03],
[131.04, 232.05, 333.06]],
[[131.07, 232.08, 333.09],
[131.10, 232.11, 333.12]]]])
class TInputFormatter(Model):
"""
A toy model to test input/output formatting.
"""
inputs = ('x', 'y')
outputs = ('x', 'y')
@staticmethod
def evaluate(x, y):
return x, y
def test_format_input_scalars():
model = TInputFormatter()
result = model(1, 2)
assert result == (1, 2)
def test_format_input_arrays():
model = TInputFormatter()
result = model([1, 1], [2, 2])
assert_allclose(result, (np.array([1, 1]), np.array([2, 2])))
def test_format_input_arrays_transposed():
model = TInputFormatter()
input = np.array([[1, 1]]).T, np.array([[2, 2]]).T
result = model(*input)
assert_allclose(result, input)
|