File: test_parameters.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (625 lines) | stat: -rw-r--r-- 21,536 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Tests models.parameters
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import itertools

import numpy as np
from numpy.testing import utils

from . import irafutil
from .. import models, fitting
from ..core import Model, FittableModel
from ..parameters import Parameter, InputParameterError
from ...utils.data import get_pkg_data_filename
from ...tests.helper import pytest


def setter1(val):
    return val


def setter2(val, model):
    model.do_something(val)
    return val * model.p


class SetterModel(FittableModel):

    inputs = ('x', 'y')
    outputs = ('z',)

    xc = Parameter(default=1, setter=setter1)
    yc = Parameter(default=1, setter=setter2)

    def __init__(self, xc, yc, p):
        self.p = p # p is a value intended to be used by the setter
        super(SetterModel, self).__init__()
        self.xc = xc
        self.yc = yc

    def evaluate(self, x, y, xc, yc):
        return ((x - xc)**2 + (y - yc)**2)

    def do_something(self, v):
        pass


class TParModel(Model):
    """
    A toy model to test parameters machinery
    """

    coeff = Parameter()
    e = Parameter()

    def __init__(self, coeff, e, **kwargs):
        super(TParModel, self).__init__(coeff=coeff, e=e, **kwargs)

    @staticmethod
    def evaluate(coeff, e):
        pass


class MockModel(FittableModel):
    alpha = Parameter(name='alpha', default=42)

    @staticmethod
    def evaluate(*args):
        pass


def test_parameter_properties():
    """Test if getting / setting of Parameter properties works."""

    m = MockModel()
    p = m.alpha

    assert p.name == 'alpha'

    # Parameter names are immutable
    with pytest.raises(AttributeError):
        p.name = 'beta'

    assert p.fixed is False
    p.fixed = True
    assert p.fixed is True

    assert p.tied is False
    p.tied = lambda _: 0

    p.tied = False
    assert p.tied is False

    assert p.min is None
    p.min = 42
    assert p.min == 42
    p.min = None
    assert p.min is None

    assert p.max is None
    # TODO: shouldn't setting a max < min give an error?
    p.max = 41
    assert p.max == 41


def test_parameter_operators():
    """Test if the parameter arithmetic operators work."""

    m = MockModel()
    par = m.alpha
    num = 42.
    val = 3

    assert par - val == num - val
    assert val - par == val - num
    assert par / val == num / val
    assert val / par == val / num
    assert par ** val == num ** val
    assert val ** par == val ** num
    assert par < 45
    assert par > 41
    assert par <= par
    assert par >= par
    assert par == par
    assert -par == -num
    assert abs(par) == abs(num)


class TestParameters(object):

    def setup_class(self):
        """
        Unit tests for parameters

        Read an iraf database file created by onedspec.identify.  Use the
        information to create a 1D Chebyshev model and perform the same fit.

        Create also a gausian model.
        """
        test_file = get_pkg_data_filename('data/idcompspec.fits')
        f = open(test_file)
        lines = f.read()
        reclist = lines.split("begin")
        f.close()
        record = irafutil.IdentifyRecord(reclist[1])
        self.icoeff = record.coeff
        order = int(record.fields['order'])
        self.model = models.Chebyshev1D(order - 1)
        self.gmodel = models.Gaussian1D(2, mean=3, stddev=4)
        self.linear_fitter = fitting.LinearLSQFitter()
        self.x = record.x
        self.y = record.z
        self.yy = np.array([record.z, record.z])

    def test_set_slice(self):
        """
        Tests updating the parameters attribute with a slice.

        This is what fitters internally do.
        """

        self.model.parameters[:] = np.array([3, 4, 5, 6, 7])
        assert (self.model.parameters == [3., 4., 5., 6., 7.]).all()

    def test_set_parameters_as_list(self):
        """Tests updating parameters using a list."""

        self.model.parameters = [30, 40, 50, 60, 70]
        assert (self.model.parameters == [30., 40., 50., 60, 70]).all()

    def test_set_parameters_as_array(self):
        """Tests updating parameters using an array."""

        self.model.parameters = np.array([3, 4, 5, 6, 7])
        assert (self.model.parameters == [3., 4., 5., 6., 7.]).all()

    def test_set_as_tuple(self):
        """Tests updating parameters using a tuple."""

        self.model.parameters = (1, 2, 3, 4, 5)
        assert (self.model.parameters == [1, 2, 3, 4, 5]).all()

    def test_set_model_attr_seq(self):
        """
        Tests updating the parameters attribute when a model's
        parameter (in this case coeff) is updated.
        """

        self.model.parameters = [0, 0., 0., 0, 0]
        self.model.c0 = 7
        assert (self.model.parameters == [7, 0., 0., 0, 0]).all()

    def test_set_model_attr_num(self):
        """Update the parameter list when a model's parameter is updated."""

        self.gmodel.amplitude = 7
        assert (self.gmodel.parameters == [7, 3, 4]).all()

    def test_set_item(self):
        """Update the parameters using indexing."""

        self.model.parameters = [1, 2, 3, 4, 5]
        self.model.parameters[0] = 10.
        assert (self.model.parameters == [10, 2, 3, 4, 5]).all()
        assert self.model.c0 == 10

    def test_wrong_size1(self):
        """
        Tests raising an error when attempting to reset the parameters
        using a list of a different size.
        """

        with pytest.raises(InputParameterError):
            self.model.parameters = [1, 2, 3]

    def test_wrong_size2(self):
        """
        Tests raising an exception when attempting to update a model's
        parameter (in this case coeff) with a sequence of the wrong size.
        """

        with pytest.raises(InputParameterError):
            self.model.c0 = [1, 2, 3]

    def test_wrong_shape(self):
        """
        Tests raising an exception when attempting to update a model's
        parameter and the new value has the wrong shape.
        """

        with pytest.raises(InputParameterError):
            self.gmodel.amplitude = [1, 2]

    def test_par_against_iraf(self):
        """
        Test the fitter modifies model.parameters.

        Uses an iraf example.
        """

        new_model = self.linear_fitter(self.model, self.x, self.y)
        print(self.y, self.x)
        utils.assert_allclose(new_model.parameters,
                              np.array(
                                  [4826.1066602783685, 952.8943813407858,
                                   12.641236013982386,
                                   -1.7910672553339604,
                                   0.90252884366711317]),
                              rtol=10 ** (-2))

    def testPolynomial1D(self):
        d = {'c0': 11, 'c1': 12, 'c2': 13, 'c3': 14}
        p1 = models.Polynomial1D(3, **d)
        utils.assert_equal(p1.parameters, [11, 12, 13, 14])

    def test_poly1d_multiple_sets(self):
        p1 = models.Polynomial1D(3, n_models=3)
        utils.assert_equal(p1.parameters, [0.0, 0.0, 0.0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0])
        utils.assert_array_equal(p1.c0, [0, 0, 0])
        p1.c0 = [10, 10, 10]
        utils.assert_equal(p1.parameters, [10.0, 10.0, 10.0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0])

    def test_par_slicing(self):
        """
        Test assigning to a parameter slice
        """
        p1 = models.Polynomial1D(3, n_models=3)
        p1.c0[:2] = [10, 10]
        utils.assert_equal(p1.parameters, [10.0, 10.0, 0.0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0])

    def test_poly2d(self):
        p2 = models.Polynomial2D(degree=3)
        p2.c0_0 = 5
        utils.assert_equal(p2.parameters, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0])

    def test_poly2d_multiple_sets(self):
        kw = {'c0_0': [2, 3], 'c1_0': [1, 2], 'c2_0': [4, 5],
              'c0_1': [1, 1], 'c0_2': [2, 2], 'c1_1': [5, 5]}
        p2 = models.Polynomial2D(2, **kw)
        utils.assert_equal(p2.parameters, [2, 3, 1, 2, 4, 5,
                                           1, 1, 2, 2, 5, 5])

    def test_shift_model_parameters1d(self):
        sh1 = models.Shift(2)
        sh1.offset = 3
        assert sh1.offset == 3
        assert sh1.offset.value == 3

    def test_scale_model_parametersnd(self):
        sc1 = models.Scale([2, 2])
        sc1.factor = [3, 3]
        assert np.all(sc1.factor == [3, 3])
        utils.assert_array_equal(sc1.factor.value, [3, 3])

    def test_parameters_wrong_shape(self):
        sh1 = models.Shift(2)
        with pytest.raises(InputParameterError):
            sh1.offset = [3, 3]


class TestMultipleParameterSets(object):

    def setup_class(self):
        self.x1 = np.arange(1, 10, .1)
        self.y, self.x = np.mgrid[:10, :7]
        self.x11 = np.array([self.x1, self.x1]).T
        self.gmodel = models.Gaussian1D([12, 10], [3.5, 5.2], stddev=[.4, .7],
                                        n_models=2)

    def test_change_par(self):
        """
        Test that a change to one parameter as a set propagates to param_sets.
        """
        self.gmodel.amplitude = [1, 10]
        utils.assert_almost_equal(
            self.gmodel.param_sets,
            np.array([[1.,
                       10],
                      [3.5,
                       5.2],
                      [0.4,
                       0.7]]))
        np.all(self.gmodel.parameters == [1.0, 10.0, 3.5, 5.2, 0.4, 0.7])

    def test_change_par2(self):
        """
        Test that a change to one single parameter in a set propagates to
        param_sets.
        """
        self.gmodel.amplitude[0] = 11
        utils.assert_almost_equal(
            self.gmodel.param_sets,
            np.array([[11.,
                       10],
                      [3.5,
                       5.2],
                      [0.4,
                       0.7]]))
        np.all(self.gmodel.parameters == [11.0, 10.0, 3.5, 5.2, 0.4, 0.7])

    def test_change_parameters(self):
        self.gmodel.parameters = [13, 10, 9, 5.2, 0.4, 0.7]
        utils.assert_almost_equal(self.gmodel.amplitude.value, [13., 10.])
        utils.assert_almost_equal(self.gmodel.mean.value, [9., 5.2])


class TestParameterInitialization(object):
    """
    This suite of tests checks most if not all cases if instantiating a model
    with parameters of different shapes/sizes and with different numbers of
    parameter sets.
    """

    def test_single_model_scalar_parameters(self):
        t = TParModel(10, 1)
        assert len(t) == 1
        assert t.model_set_axis is False
        assert np.all(t.param_sets == [[10], [1]])
        assert np.all(t.parameters == [10, 1])
        assert t.coeff.shape == ()
        assert t.e.shape == ()

    def test_single_model_scalar_and_array_parameters(self):
        t = TParModel(10, [1, 2])
        assert len(t) == 1
        assert t.model_set_axis is False
        assert np.issubdtype(t.param_sets.dtype, object)
        assert len(t.param_sets) == 2
        assert np.all(t.param_sets[0] == [10])
        assert np.all(t.param_sets[1] == [[1, 2]])
        assert np.all(t.parameters == [10, 1, 2])
        assert t.coeff.shape == ()
        assert t.e.shape == (2,)

    def test_single_model_1d_array_parameters(self):
        t = TParModel([10, 20], [1, 2])
        assert len(t) == 1
        assert t.model_set_axis is False
        assert np.all(t.param_sets == [[[10, 20]], [[1, 2]]])
        assert np.all(t.parameters == [10, 20, 1, 2])
        assert t.coeff.shape == (2,)
        assert t.e.shape == (2,)

    def test_single_model_1d_array_different_length_parameters(self):
        with pytest.raises(InputParameterError):
            # Not broadcastable
            t = TParModel([1, 2], [3, 4, 5])

    def test_single_model_2d_array_parameters(self):
        t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]])
        assert len(t) == 1
        assert t.model_set_axis is False
        assert np.all(t.param_sets == [[[[10, 20], [30, 40]]],
                                       [[[1, 2], [3, 4]]]])
        assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4])
        assert t.coeff.shape == (2, 2)
        assert t.e.shape == (2, 2)

    def test_single_model_2d_non_square_parameters(self):
        coeff = np.array([[10, 20], [30, 40], [50, 60]])
        e = np.array([[1, 2], [3, 4], [5, 6]])

        t = TParModel(coeff, e)
        assert len(t) == 1
        assert t.model_set_axis is False
        assert np.all(t.param_sets == [[[[10, 20], [30, 40], [50, 60]]],
                                       [[[1, 2], [3, 4], [5, 6]]]])
        assert np.all(t.parameters == [10, 20, 30, 40, 50, 60,
                                       1, 2, 3, 4, 5, 6])
        assert t.coeff.shape == (3, 2)
        assert t.e.shape == (3, 2)

        t2 = TParModel(coeff.T, e.T)
        assert len(t2) == 1
        assert t2.model_set_axis is False
        assert np.all(t2.param_sets == [[[[10, 30, 50], [20, 40, 60]]],
                                        [[[1, 3, 5], [2, 4, 6]]]])
        assert np.all(t2.parameters == [10, 30, 50, 20, 40, 60,
                                        1, 3, 5, 2, 4, 6])
        assert t2.coeff.shape == (2, 3)
        assert t2.e.shape == (2, 3)

        # Not broadcastable
        with pytest.raises(InputParameterError):
            TParModel(coeff, e.T)

        with pytest.raises(InputParameterError):
            TParModel(coeff.T, e)

    def test_single_model_2d_broadcastable_parameters(self):
        t = TParModel([[10, 20, 30], [40, 50, 60]], [1, 2, 3])
        assert len(t) == 1
        assert t.model_set_axis is False
        assert len(t.param_sets) == 2
        assert np.issubdtype(t.param_sets.dtype, object)
        assert np.all(t.param_sets[0] == [[[10, 20, 30], [40, 50, 60]]])
        assert np.all(t.param_sets[1] == [[1, 2, 3]])
        assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3])

    @pytest.mark.parametrize(('p1', 'p2'), [
        (1, 2), (1, [2, 3]), ([1, 2], 3), ([1, 2, 3], [4, 5]),
        ([1, 2], [3, 4, 5])])
    def test_two_model_incorrect_scalar_parameters(self, p1, p2):
        with pytest.raises(InputParameterError):
            TParModel(p1, p2, n_models=2)

    @pytest.mark.parametrize('kwargs', [
        {'n_models': 2}, {'model_set_axis': 0},
        {'n_models': 2, 'model_set_axis': 0}])
    def test_two_model_scalar_parameters(self, kwargs):
        t = TParModel([10, 20], [1, 2], **kwargs)
        assert len(t) == 2
        assert t.model_set_axis == 0
        assert np.all(t.param_sets == [[10, 20], [1, 2]])
        assert np.all(t.parameters == [10, 20, 1, 2])
        assert t.coeff.shape == ()
        assert t.e.shape == ()

    @pytest.mark.parametrize('kwargs', [
        {'n_models': 2}, {'model_set_axis': 0},
        {'n_models': 2, 'model_set_axis': 0}])
    def test_two_model_scalar_and_array_parameters(self, kwargs):
        t = TParModel([10, 20], [[1, 2], [3, 4]], **kwargs)
        assert len(t) == 2
        assert t.model_set_axis == 0
        assert len(t.param_sets) == 2
        assert np.issubdtype(t.param_sets.dtype, object)
        assert np.all(t.param_sets[0] == [[10], [20]])
        assert np.all(t.param_sets[1] == [[1, 2], [3, 4]])
        assert np.all(t.parameters  == [10, 20, 1, 2, 3, 4])
        assert t.coeff.shape == ()
        assert t.e.shape == (2,)

    def test_two_model_1d_array_parameters(self):
        t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]], n_models=2)
        assert len(t) == 2
        assert t.model_set_axis == 0
        assert np.all(t.param_sets == [[[10, 20], [30, 40]],
                                       [[1, 2], [3, 4]]])
        assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4])
        assert t.coeff.shape == (2,)
        assert t.e.shape == (2,)

        t2 = TParModel([[10, 20, 30], [40, 50, 60]],
                          [[1, 2, 3], [4, 5, 6]], n_models=2)
        assert len(t2) == 2
        assert t2.model_set_axis == 0
        assert np.all(t2.param_sets == [[[10, 20, 30], [40, 50, 60]],
                                        [[1, 2, 3], [4, 5, 6]]])
        assert np.all(t2.parameters == [10, 20, 30, 40, 50, 60,
                                        1, 2, 3, 4, 5, 6])
        assert t2.coeff.shape == (3,)
        assert t2.e.shape == (3,)

    def test_two_model_mixed_dimension_array_parameters(self):
        with pytest.raises(InputParameterError):
            # Can't broadcast different array shapes
            TParModel([[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
                         [[9, 10, 11], [12, 13, 14]], n_models=2)

        t = TParModel([[[10, 20], [30, 40]], [[50, 60], [70, 80]]],
                         [[1, 2], [3, 4]], n_models=2)
        assert len(t) == 2
        assert t.model_set_axis == 0
        assert len(t.param_sets) == 2
        assert np.issubdtype(t.param_sets.dtype, object)
        assert np.all(t.param_sets[0] == [[[10, 20], [30, 40]],
                                          [[50, 60], [70, 80]]])
        assert np.all(t.param_sets[1] == [[[1, 2]], [[3, 4]]])
        assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 70, 80,
                                       1, 2, 3, 4])
        assert t.coeff.shape == (2, 2)
        assert t.e.shape == (2,)

    def test_two_model_2d_array_parameters(self):
        t = TParModel([[[10, 20], [30, 40]], [[50, 60], [70, 80]]],
                         [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], n_models=2)
        assert len(t) == 2
        assert t.model_set_axis == 0
        assert np.all(t.param_sets == [[[[10, 20], [30, 40]],
                                        [[50, 60], [70, 80]]],
                                       [[[1, 2], [3, 4]],
                                        [[5, 6], [7, 8]]]])
        assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 70, 80,
                                       1, 2, 3, 4, 5, 6, 7, 8])
        assert t.coeff.shape == (2, 2)
        assert t.e.shape == (2, 2)

    def test_two_model_nonzero_model_set_axis(self):
        # An example where the model set axis is the *last* axis of the
        # parameter arrays
        coeff = np.array([[[10, 20], [30, 40]], [[50, 60], [70, 80]]])
        coeff = np.rollaxis(coeff, 0, 3)
        e = np.array([[1, 2], [3, 4]])
        e = np.rollaxis(e, 0, 2)
        t = TParModel(coeff, e, model_set_axis=-1)
        assert len(t) == 2
        assert t.model_set_axis == -1
        assert len(t.param_sets) == 2
        assert np.issubdtype(t.param_sets.dtype, object)
        assert np.all(t.param_sets[0] == [[[10, 50], [20, 60]],
                                          [[30, 70], [40, 80]]])
        assert np.all(t.param_sets[1] == [[[1, 3], [2, 4]]])
        assert np.all(t.parameters == [10, 50, 20, 60, 30, 70, 40, 80,
                                       1, 3, 2, 4])
        assert t.coeff.shape == (2, 2)
        assert t.e.shape == (2,)

    def test_wrong_number_of_params(self):
        with pytest.raises(InputParameterError):
            TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), n_models=2)
        with pytest.raises(InputParameterError):
            TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), model_set_axis=0)

    def test_wrong_number_of_params2(self):
        with pytest.raises(InputParameterError):
            m = TParModel(coeff=[[1, 2], [3, 4]], e=4, n_models=2)
        with pytest.raises(InputParameterError):
            m = TParModel(coeff=[[1, 2], [3, 4]], e=4, model_set_axis=0)

    def test_array_parameter1(self):
        with pytest.raises(InputParameterError):
            t = TParModel(np.array([[1, 2], [3, 4]]), 1, model_set_axis=0)

    def test_array_parameter2(self):
        with pytest.raises(InputParameterError):
            m = TParModel(np.array([[1, 2], [3, 4]]), (1, 1, 11),
                             model_set_axis=0)

    def test_array_parameter4(self):
        """
        Test multiple parameter model with array-valued parameters of the same
        size as the number of parameter sets.
        """

        t4 = TParModel([[1, 2], [3, 4]], [5, 6], model_set_axis=False)
        assert len(t4) == 1
        assert t4.coeff.shape == (2, 2)
        assert t4.e.shape == (2,)
        assert np.issubdtype(t4.param_sets.dtype, object)
        assert np.all(t4.param_sets[0] == [[1, 2], [3, 4]])
        assert np.all(t4.param_sets[1] == [5, 6])


def test_non_broadcasting_parameters():
    """
    Tests that in a model with 3 parameters that do not all mutually broadcast,
    this is determined correctly regardless of what order the parameters are
    in.
    """

    a = 3
    b = np.array([[1, 2, 3], [4, 5, 6]])
    c = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])

    class TestModel(Model):
        p1 = Parameter()
        p2 = Parameter()
        p3 = Parameter()

        def evaluate(self, *args):
            return

    # a broadcasts with both b and c, but b does not broadcast with c
    for args in itertools.permutations((a, b, c)):
        with pytest.raises(InputParameterError):
            TestModel(*args)


def test_setter():
    pars = np.random.rand(20).reshape((10,2))

    model = SetterModel(-1, 3, np.pi)

    for x, y in pars:
        model.x = x
        model.y = y
        utils.assert_almost_equal(model(x, y), (x + 1)**2 + (y - np.pi * 3)**2)