File: flag_collection.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (50 lines) | stat: -rw-r--r-- 1,767 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Licensed under a 3-clause BSD style license - see LICENSE.rst

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from collections import OrderedDict

import numpy as np

from ..utils.misc import isiterable

__all__ = ['FlagCollection']


class FlagCollection(OrderedDict):
    """
    The purpose of this class is to provide a dictionary for
    containing arrays of flags for the `NDData` class. Flags should be
    stored in Numpy arrays that have the same dimensions as the parent
    data, so the `FlagCollection` class adds shape checking to an
    ordered dictionary class.

    The `FlagCollection` should be initialized like an
    `~collections.OrderedDict`, but with the addition of a ``shape=``
    keyword argument used to pass the NDData shape.
    """

    def __init__(self, *args, **kwargs):

        if 'shape' in kwargs:
            self.shape = kwargs.pop('shape')
            if not isiterable(self.shape):
                raise ValueError("FlagCollection shape should be "
                                 "an iterable object")
        else:
            raise Exception("FlagCollection should be initialized with "
                            "the shape of the data")

        OrderedDict.__init__(self, *args, **kwargs)

    def __setitem__(self, item, value, **kwargs):

        if isinstance(value, np.ndarray):
            if value.shape == self.shape:
                OrderedDict.__setitem__(self, item, value, **kwargs)
            else:
                raise ValueError("flags array shape {0} does not match data "
                                 "shape {1}".format(value.shape, self.shape))
        else:
            raise TypeError("flags should be given as a Numpy array")