1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
# TEST_UNICODE_LITERALS
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import textwrap
from collections import OrderedDict
import numpy as np
from numpy.testing import assert_array_equal
from ..nddata import NDData
from ..nduncertainty import NDUncertainty, StdDevUncertainty
from ...tests.helper import pytest
from ... import units as u
from ...utils import NumpyRNGContext
class FakeUncertainty(NDUncertainty):
@property
def uncertainty_type(self):
return 'fake'
def _propagate_add(self, data, final_data):
pass
def _propagate_subtract(self, data, final_data):
pass
def _propagate_multiply(self, data, final_data):
pass
def _propagate_divide(self, data, final_data):
pass
class FakeNumpyArray(object):
"""
Class that has a few of the attributes of a numpy array.
These attributes are checked for by NDData.
"""
def __init__(self):
super(FakeNumpyArray, self).__init__()
def shape(self):
pass
def __getitem__(self):
pass
def __array__(self):
pass
@property
def dtype(self):
return 'fake'
class MinimalUncertainty(object):
"""
Define the minimum attributes acceptable as an uncertainty object.
"""
def __init__(self, value):
self._uncertainty = value
@property
def uncertainty_type(self):
return "totally and completely fake"
class BadNDDataSubclass(NDData):
def __init__(self, data, uncertainty=None, mask=None, wcs=None,
meta=None, unit=None):
self._data = data
self._uncertainty = uncertainty
self._mask = mask
self._wcs = wcs
self._unit = unit
self._meta = meta
# Setter tests
def test_uncertainty_setter():
nd = NDData([1, 2, 3])
good_uncertainty = MinimalUncertainty(5)
nd.uncertainty = good_uncertainty
assert nd.uncertainty is good_uncertainty
# Check the fake uncertainty (minimal does not work since it has no
# parent_nddata attribute from NDUncertainty)
nd.uncertainty = FakeUncertainty(5)
assert nd.uncertainty.parent_nddata is nd
# Check that it works if the uncertainty was set during init
nd = NDData(nd)
assert isinstance(nd.uncertainty, FakeUncertainty)
nd.uncertainty = 10
assert not isinstance(nd.uncertainty, FakeUncertainty)
assert nd.uncertainty.array == 10
def test_mask_setter():
# Since it just changes the _mask attribute everything should work
nd = NDData([1, 2, 3])
nd.mask = True
assert nd.mask
nd.mask = False
assert not nd.mask
# Check that it replaces a mask from init
nd = NDData(nd, mask=True)
assert nd.mask
nd.mask = False
assert not nd.mask
# Init tests
def test_nddata_empty():
with pytest.raises(TypeError):
NDData() # empty initializer should fail
def test_nddata_init_data_nonarray():
inp = [1, 2, 3]
nd = NDData(inp)
assert (np.array(inp) == nd.data).all()
def test_nddata_init_data_ndarray():
# random floats
with NumpyRNGContext(123):
nd = NDData(np.random.random((10, 10)))
assert nd.data.shape == (10, 10)
assert nd.data.size == 100
assert nd.data.dtype == np.dtype(float)
# specific integers
nd = NDData(np.array([[1, 2, 3], [4, 5, 6]]))
assert nd.data.size == 6
assert nd.data.dtype == np.dtype(int)
# Tests to ensure that creating a new NDData object copies by *reference*.
a = np.ones((10, 10))
nd_ref = NDData(a)
a[0, 0] = 0
assert nd_ref.data[0, 0] == 0
# Except we choose copy=True
a = np.ones((10, 10))
nd_ref = NDData(a, copy=True)
a[0, 0] = 0
assert nd_ref.data[0, 0] != 0
def test_nddata_init_data_maskedarray():
with NumpyRNGContext(456):
NDData(np.random.random((10, 10)),
mask=np.random.random((10, 10)) > 0.5)
# Another test (just copied here)
with NumpyRNGContext(12345):
a = np.random.randn(100)
marr = np.ma.masked_where(a > 0, a)
nd = NDData(marr)
# check that masks and data match
assert_array_equal(nd.mask, marr.mask)
assert_array_equal(nd.data, marr.data)
# check that they are both by reference
marr.mask[10] = ~marr.mask[10]
marr.data[11] = 123456789
assert_array_equal(nd.mask, marr.mask)
assert_array_equal(nd.data, marr.data)
# or not if we choose copy=True
nd = NDData(marr, copy=True)
marr.mask[10] = ~marr.mask[10]
marr.data[11] = 0
assert nd.mask[10] != marr.mask[10]
assert nd.data[11] != marr.data[11]
@pytest.mark.parametrize('data', [np.array([1, 2, 3]), 5])
def test_nddata_init_data_quantity(data):
# Test an array and a scalar because a scalar Quantity does not always
# behaves the same way as an array.
quantity = data * u.adu
ndd = NDData(quantity)
assert ndd.unit == quantity.unit
assert_array_equal(ndd.data, np.array(quantity.value))
if ndd.data.size > 1:
# check that if it is an array it is not copied
quantity.value[1] = 100
assert ndd.data[1] == quantity.value[1]
# or is copied if we choose copy=True
ndd = NDData(quantity, copy=True)
quantity.value[1] = 5
assert ndd.data[1] != quantity.value[1]
def test_nddata_init_data_masked_quantity():
a = np.array([2, 3])
q = a * u.m
m = False
mq = np.ma.array(q, mask=m)
nd = NDData(mq)
assert_array_equal(nd.data, a)
# This test failed before the change in nddata init because the masked
# arrays data (which in fact was a quantity was directly saved)
assert nd.unit == u.m
assert not isinstance(nd.data, u.Quantity)
np.testing.assert_array_equal(nd.mask, np.array(m))
def test_nddata_init_data_nddata():
nd1 = NDData(np.array([1]))
nd2 = NDData(nd1)
assert nd2.wcs == nd1.wcs
assert nd2.uncertainty == nd1.uncertainty
assert nd2.mask == nd1.mask
assert nd2.unit == nd1.unit
assert nd2.meta == nd1.meta
# Check that it is copied by reference
nd1 = NDData(np.ones((5, 5)))
nd2 = NDData(nd1)
assert nd1.data is nd2.data
# Check that it is really copied if copy=True
nd2 = NDData(nd1, copy=True)
nd1.data[2, 3] = 10
assert nd1.data[2, 3] != nd2.data[2, 3]
# Now let's see what happens if we have all explicitly set
nd1 = NDData(np.array([1]), mask=False, uncertainty=10, unit=u.s,
meta={'dest': 'mordor'}, wcs=10)
nd2 = NDData(nd1)
assert nd2.data is nd1.data
assert nd2.wcs == nd1.wcs
assert nd2.uncertainty.array == nd1.uncertainty.array
assert nd2.mask == nd1.mask
assert nd2.unit == nd1.unit
assert nd2.meta == nd1.meta
# now what happens if we overwrite them all too
nd3 = NDData(nd1, mask=True, uncertainty=200, unit=u.km,
meta={'observer': 'ME'}, wcs=4)
assert nd3.data is nd1.data
assert nd3.wcs != nd1.wcs
assert nd3.uncertainty.array != nd1.uncertainty.array
assert nd3.mask != nd1.mask
assert nd3.unit != nd1.unit
assert nd3.meta != nd1.meta
def test_nddata_init_data_nddata_subclass():
# There might be some incompatible subclasses of NDData around.
bnd = BadNDDataSubclass(False, True, 3, 2, 'gollum', 100)
# Before changing the NDData init this would not have raised an error but
# would have lead to a compromised nddata instance
with pytest.raises(TypeError):
NDData(bnd)
# but if it has no actual incompatible attributes it passes
bnd_good = BadNDDataSubclass(np.array([1, 2]), True, 3, 2,
{'enemy': 'black knight'}, u.km)
nd = NDData(bnd_good)
assert nd.unit == bnd_good.unit
assert nd.meta == bnd_good.meta
assert nd.uncertainty.array == bnd_good.uncertainty
assert nd.mask == bnd_good.mask
assert nd.wcs == bnd_good.wcs
assert nd.data is bnd_good.data
def test_nddata_init_data_fail():
# First one is sliceable but has no shape, so should fail.
with pytest.raises(TypeError):
NDData({'a': 'dict'})
# This has a shape but is not sliceable
class Shape(object):
def __init__(self):
self.shape = 5
def __repr__(self):
return '7'
with pytest.raises(TypeError):
NDData(Shape())
def test_nddata_init_data_fakes():
ndd1 = NDData(FakeNumpyArray())
# First make sure that NDData isn't converting its data to a numpy array.
assert isinstance(ndd1.data, FakeNumpyArray)
# Make a new NDData initialized from an NDData
ndd2 = NDData(ndd1)
# Check that the data wasn't converted to numpy
assert isinstance(ndd2.data, FakeNumpyArray)
# Specific parameters
def test_param_uncertainty():
u = StdDevUncertainty(array=np.ones((5, 5)))
d = NDData(np.ones((5, 5)), uncertainty=u)
# Test that the parent_nddata is set.
assert d.uncertainty.parent_nddata is d
# Test conflicting uncertainties (other NDData)
u2 = StdDevUncertainty(array=np.ones((5, 5))*2)
d2 = NDData(d, uncertainty=u2)
assert d2.uncertainty is u2
assert d2.uncertainty.parent_nddata is d2
def test_param_wcs():
# Since everything is allowed we only need to test something
nd = NDData([1], wcs=3)
assert nd.wcs == 3
# Test conflicting wcs (other NDData)
nd2 = NDData(nd, wcs=2)
assert nd2.wcs == 2
def test_param_meta():
# everything dict-like is allowed
with pytest.raises(TypeError):
NDData([1], meta=3)
nd = NDData([1, 2, 3], meta={})
assert len(nd.meta) == 0
nd = NDData([1, 2, 3])
assert isinstance(nd.meta, OrderedDict)
assert len(nd.meta) == 0
# Test conflicting meta (other NDData)
nd2 = NDData(nd, meta={'image': 'sun'})
assert len(nd2.meta) == 1
nd3 = NDData(nd2, meta={'image': 'moon'})
assert len(nd3.meta) == 1
assert nd3.meta['image'] == 'moon'
def test_param_mask():
# Since everything is allowed we only need to test something
nd = NDData([1], mask=False)
assert not nd.mask
# Test conflicting mask (other NDData)
nd2 = NDData(nd, mask=True)
assert nd2.mask
# (masked array)
nd3 = NDData(np.ma.array([1], mask=False), mask=True)
assert nd3.mask
# (masked quantity)
mq = np.ma.array(np.array([2, 3])*u.m, mask=False)
nd4 = NDData(mq, mask=True)
assert nd4.mask
def test_param_unit():
with pytest.raises(ValueError):
NDData(np.ones((5, 5)), unit="NotAValidUnit")
NDData([1, 2, 3], unit='meter')
# Test conflicting units (quantity as data)
q = np.array([1, 2, 3]) * u.m
nd = NDData(q, unit='cm')
assert nd.unit != q.unit
assert nd.unit == u.cm
# (masked quantity)
mq = np.ma.array(np.array([2, 3])*u.m, mask=False)
nd2 = NDData(mq, unit=u.s)
assert nd2.unit == u.s
# (another NDData as data)
nd3 = NDData(nd, unit='km')
assert nd3.unit == u.km
# Check that the meta descriptor is working as expected. The MetaBaseTest class
# takes care of defining all the tests, and we simply have to define the class
# and any minimal set of args to pass.
from ...utils.tests.test_metadata import MetaBaseTest
class TestMetaNDData(MetaBaseTest):
test_class = NDData
args = np.array([[1.]])
# Representation tests
def test_nddata_str():
arr1d = NDData(np.array([1, 2, 3]))
assert str(arr1d) == '[1 2 3]'
arr2d = NDData(np.array([[1, 2], [3, 4]]))
assert str(arr2d) == textwrap.dedent("""
[[1 2]
[3 4]]"""[1:])
arr3d = NDData(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))
assert str(arr3d) == textwrap.dedent("""
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]"""[1:])
def test_nddata_repr():
arr1d = NDData(np.array([1, 2, 3]))
assert repr(arr1d) == 'NDData([1, 2, 3])'
arr2d = NDData(np.array([[1, 2], [3, 4]]))
assert repr(arr2d) == textwrap.dedent("""
NDData([[1, 2],
[3, 4]])"""[1:])
arr3d = NDData(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))
assert repr(arr3d) == textwrap.dedent("""
NDData([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])"""[1:])
# Not supported features
def test_slicing_not_supported():
ndd = NDData(np.ones((5, 5)))
with pytest.raises(TypeError):
ndd[0]
def test_arithmetic_not_supported():
ndd = NDData(np.ones((5, 5)))
with pytest.raises(TypeError):
ndd + ndd
|