1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy.testing import assert_allclose
from ...tests.helper import pytest, assert_quantity_allclose
from ..utils import (extract_array, add_array, subpixel_indices,
block_reduce, block_replicate,
overlap_slices, NoOverlapError, PartialOverlapError,
Cutout2D)
from ...wcs import WCS
from ...coordinates import SkyCoord
from ... import units as u
from ...extern.six.moves import zip
try:
import skimage # pylint: disable=W0611
HAS_SKIMAGE = True
except ImportError:
HAS_SKIMAGE = False
test_positions = [(10.52, 3.12), (5.62, 12.97), (31.33, 31.77),
(0.46, 0.94), (20.45, 12.12), (42.24, 24.42)]
test_position_indices = [(0, 3), (0, 2), (4, 1),
(4, 2), (4, 3), (3, 4)]
test_slices = [slice(10.52, 3.12), slice(5.62, 12.97),
slice(31.33, 31.77), slice(0.46, 0.94),
slice(20.45, 12.12), slice(42.24, 24.42)]
subsampling = 5
test_pos_bad = [(-1, -4), (-1, 0), (6, 2), (6, 6)]
def test_slices_different_dim():
'''Overlap from arrays with different number of dim is undefined.'''
with pytest.raises(ValueError) as e:
overlap_slices((4, 5, 6), (1, 2), (0, 0))
assert "the same number of dimensions" in str(e.value)
def test_slices_pos_different_dim():
'''Position must have same dim as arrays.'''
with pytest.raises(ValueError) as e:
overlap_slices((4, 5), (1, 2), (0, 0, 3))
assert "the same number of dimensions" in str(e.value)
@pytest.mark.parametrize('pos', test_pos_bad)
def test_slices_no_overlap(pos):
'''If there is no overlap between arrays, an error should be raised.'''
with pytest.raises(NoOverlapError):
overlap_slices((5, 5), (2, 2), pos)
def test_slices_partial_overlap():
'''Compute a slice for partially overlapping arrays.'''
temp = overlap_slices((5,), (3,), (0,))
assert temp == ((slice(0, 2, None),), (slice(1, 3, None),))
temp = overlap_slices((5,), (3,), (0,), mode='partial')
assert temp == ((slice(0, 2, None),), (slice(1, 3, None),))
for pos in [0, 4]:
with pytest.raises(PartialOverlapError) as e:
temp = overlap_slices((5,), (3,), (pos,), mode='strict')
assert 'Arrays overlap only partially.' in str(e.value)
def test_slices_overlap_wrong_mode():
'''Call overlap_slices with non-existing mode.'''
with pytest.raises(ValueError) as e:
overlap_slices((5,), (3,), (0,), mode='full')
assert "Mode can be only" in str(e.value)
def test_extract_array_wrong_mode():
'''Call extract_array with non-existing mode.'''
with pytest.raises(ValueError) as e:
extract_array(np.arange(4), (2, ), (0, ), mode='full')
assert "Valid modes are 'partial', 'trim', and 'strict'." == str(e.value)
def test_extract_array_1d_even():
'''Extract 1 d arrays.
All dimensions are treated the same, so we can test in 1 dim.
'''
assert np.all(extract_array(np.arange(4), (2, ), (0, ), fill_value=-99) == np.array([-99, 0]))
for i in [1, 2, 3]:
assert np.all(extract_array(np.arange(4), (2, ), (i, )) == np.array([i -1 , i]))
assert np.all(extract_array(np.arange(4.), (2, ), (4, ), fill_value=np.inf) == np.array([3, np.inf]))
def test_extract_array_1d_odd():
'''Extract 1 d arrays.
All dimensions are treated the same, so we can test in 1 dim.
The first few lines test the most error-prone part: Extraction of an
array on the boundaries.
Additional tests (e.g. dtype of return array) are done for the last
case only.
'''
assert np.all(extract_array(np.arange(4), (3,), (-1, ), fill_value=-99) == np.array([-99, -99, 0]))
assert np.all(extract_array(np.arange(4), (3,), (0, ), fill_value=-99) == np.array([-99, 0, 1]))
for i in [1,2]:
assert np.all(extract_array(np.arange(4), (3,), (i, )) == np.array([i-1, i, i+1]))
assert np.all(extract_array(np.arange(4), (3,), (3, ), fill_value=-99) == np.array([2, 3, -99]))
arrayin = np.arange(4.)
extracted = extract_array(arrayin, (3,), (4, ))
assert extracted[0] == 3
assert np.isnan(extracted[1]) # since I cannot use `==` to test for nan
assert extracted.dtype == arrayin.dtype
def test_extract_array_1d():
"""In 1d, shape can be int instead of tuple"""
assert np.all(extract_array(np.arange(4), 3, (-1, ), fill_value=-99) == np.array([-99, -99, 0]))
assert np.all(extract_array(np.arange(4), 3, -1, fill_value=-99) == np.array([-99, -99, 0]))
def test_extract_Array_float():
"""integer is at bin center"""
for a in np.arange(2.51, 3.49, 0.1):
assert np.all(extract_array(np.arange(5), 3, a) == np.array([2, 3, 4]))
def test_extract_array_1d_trim():
'''Extract 1 d arrays.
All dimensions are treated the same, so we can test in 1 dim.
'''
assert np.all(extract_array(np.arange(4), (2, ), (0, ), mode='trim') == np.array([0]))
for i in [1, 2, 3]:
assert np.all(extract_array(np.arange(4), (2, ), (i, ), mode='trim') == np.array([i -1 , i]))
assert np.all(extract_array(np.arange(4.), (2, ), (4, ), mode='trim') == np.array([3]))
@pytest.mark.parametrize('mode', ['partial', 'trim', 'strict'])
def test_extract_array_easy(mode):
"""
Test extract_array utility function.
Test by extracting an array of ones out of an array of zeros.
"""
large_test_array = np.zeros((11, 11))
small_test_array = np.ones((5, 5))
large_test_array[3:8, 3:8] = small_test_array
extracted_array = extract_array(large_test_array, (5, 5), (5, 5), mode=mode)
assert np.all(extracted_array == small_test_array)
def test_extract_array_return_pos():
'''Check that the return position is calculated correctly.
The result will differ by mode. All test here are done in 1d because it's
easier to construct correct test cases.
'''
large_test_array = np.arange(5)
for i in np.arange(-1, 6):
extracted, new_pos = extract_array(large_test_array, 3, i,
mode='partial', return_position=True)
assert new_pos == (1, )
# Now check an array with an even number
for i, expected in zip([1.49, 1.51, 3], [1.49, 0.51, 1]):
extracted, new_pos = extract_array(large_test_array, (2,), (i,),
mode='strict', return_position=True)
assert new_pos == (expected, )
# For mode='trim' the answer actually depends
for i, expected in zip(np.arange(-1, 6), (-1, 0, 1, 1, 1, 1, 1)):
extracted, new_pos = extract_array(large_test_array, (3,), (i,),
mode='trim', return_position=True)
assert new_pos == (expected, )
def test_add_array_odd_shape():
"""
Test add_array utility function.
Test by adding an array of ones out of an array of zeros.
"""
large_test_array = np.zeros((11, 11))
small_test_array = np.ones((5, 5))
large_test_array_ref = large_test_array.copy()
large_test_array_ref[3:8, 3:8] += small_test_array
added_array = add_array(large_test_array, small_test_array, (5, 5))
assert np.all(added_array == large_test_array_ref)
def test_add_array_even_shape():
"""
Test add_array_2D utility function.
Test by adding an array of ones out of an array of zeros.
"""
large_test_array = np.zeros((11, 11))
small_test_array = np.ones((4, 4))
large_test_array_ref = large_test_array.copy()
large_test_array_ref[0:2, 0:2] += small_test_array[2:4, 2:4]
added_array = add_array(large_test_array, small_test_array, (0, 0))
assert np.all(added_array == large_test_array_ref)
@pytest.mark.parametrize(('position', 'subpixel_index'),
zip(test_positions, test_position_indices))
def test_subpixel_indices(position, subpixel_index):
"""
Test subpixel_indices utility function.
Test by asserting that the function returns correct results for
given test values.
"""
assert np.all(subpixel_indices(position, subsampling) == subpixel_index)
@pytest.mark.skipif('not HAS_SKIMAGE')
class TestBlockReduce(object):
def test_1d(self):
"""Test 1D array."""
data = np.arange(4)
expected = np.array([1, 5])
result = block_reduce(data, 2)
assert np.all(result == expected)
def test_1d_mean(self):
"""Test 1D array with func=np.mean."""
data = np.arange(4)
block_size = 2.
expected = block_reduce(data, block_size, func=np.sum) / block_size
result_mean = block_reduce(data, block_size, func=np.mean)
assert np.all(result_mean == expected)
def test_2d(self):
"""Test 2D array."""
data = np.arange(4).reshape(2, 2)
expected = np.array([[6]])
result = block_reduce(data, 2)
assert np.all(result == expected)
def test_2d_mean(self):
"""Test 2D array with func=np.mean."""
data = np.arange(4).reshape(2, 2)
block_size = 2.
expected = (block_reduce(data, block_size, func=np.sum) /
block_size**2)
result = block_reduce(data, block_size, func=np.mean)
assert np.all(result == expected)
def test_2d_trim(self):
"""
Test trimming of 2D array when size is not perfectly divisible
by block_size.
"""
data1 = np.arange(15).reshape(5, 3)
result1 = block_reduce(data1, 2)
data2 = data1[0:4, 0:2]
result2 = block_reduce(data2, 2)
assert np.all(result1 == result2)
def test_block_size_broadcasting(self):
"""Test scalar block_size broadcasting."""
data = np.arange(16).reshape(4, 4)
result1 = block_reduce(data, 2)
result2 = block_reduce(data, (2, 2))
assert np.all(result1 == result2)
def test_block_size_len(self):
"""Test block_size length."""
data = np.ones((2, 2))
with pytest.raises(ValueError):
block_reduce(data, (2, 2, 2))
@pytest.mark.skipif('not HAS_SKIMAGE')
class TestBlockReplicate(object):
def test_1d(self):
"""Test 1D array."""
data = np.arange(2)
expected = np.array([0, 0, 0.5, 0.5])
result = block_replicate(data, 2)
assert np.all(result == expected)
def test_1d_conserve_sum(self):
"""Test 1D array with conserve_sum=False."""
data = np.arange(2)
block_size = 2.
expected = block_replicate(data, block_size) * block_size
result = block_replicate(data, block_size, conserve_sum=False)
assert np.all(result == expected)
def test_2d(self):
"""Test 2D array."""
data = np.arange(2).reshape(2, 1)
expected = np.array([[0, 0], [0, 0], [0.25, 0.25], [0.25, 0.25]])
result = block_replicate(data, 2)
assert np.all(result == expected)
def test_2d_conserve_sum(self):
"""Test 2D array with conserve_sum=False."""
data = np.arange(6).reshape(2, 3)
block_size = 2.
expected = block_replicate(data, block_size) * block_size**2
result = block_replicate(data, block_size, conserve_sum=False)
assert np.all(result == expected)
def test_block_size_broadcasting(self):
"""Test scalar block_size broadcasting."""
data = np.arange(4).reshape(2, 2)
result1 = block_replicate(data, 2)
result2 = block_replicate(data, (2, 2))
assert np.all(result1 == result2)
def test_block_size_len(self):
"""Test block_size length."""
data = np.arange(5)
with pytest.raises(ValueError):
block_replicate(data, (2, 2))
class TestCutout2D(object):
def setup_class(self):
self.data = np.arange(20.).reshape(5, 4)
self.position = SkyCoord('13h11m29.96s -01d19m18.7s', frame='icrs')
wcs = WCS(naxis=2)
rho = np.pi / 3.
scale = 0.05 / 3600.
wcs.wcs.cd = [[scale*np.cos(rho), -scale*np.sin(rho)],
[scale*np.sin(rho), scale*np.cos(rho)]]
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
wcs.wcs.crval = [self.position.ra.to(u.deg).value,
self.position.dec.to(u.deg).value]
wcs.wcs.crpix = [3, 3]
self.wcs = wcs
def test_cutout(self):
sizes = [3, 3*u.pixel, (3, 3), (3*u.pixel, 3*u.pix), (3., 3*u.pixel),
(2.9, 3.3)]
for size in sizes:
position = (2.1, 1.9)
c = Cutout2D(self.data, position, size)
assert c.data.shape == (3, 3)
assert c.data[1, 1] == 10
assert c.origin_original == (1, 1)
assert c.origin_cutout == (0, 0)
assert c.input_position_original == position
assert_allclose(c.input_position_cutout, (1.1, 0.9))
assert c.position_original == (2., 2.)
assert c.position_cutout == (1., 1.)
assert c.center_original == (2., 2.)
assert c.center_cutout == (1., 1.)
assert c.bbox_original == ((1, 3), (1, 3))
assert c.bbox_cutout == ((0, 2), (0, 2))
assert c.slices_original == (slice(1, 4), slice(1, 4))
assert c.slices_cutout == (slice(0, 3), slice(0, 3))
def test_size_length(self):
with pytest.raises(ValueError):
Cutout2D(self.data, (2, 2), (1, 1, 1))
def test_size_units(self):
for size in [3 * u.cm, (3, 3 * u.K)]:
with pytest.raises(ValueError):
Cutout2D(self.data, (2, 2), size)
def test_size_pixel(self):
"""
Check size in derived pixel units.
"""
size = 0.3*u.arcsec / (0.1*u.arcsec/u.pixel)
c = Cutout2D(self.data, (2, 2), size)
assert c.data.shape == (3, 3)
assert c.data[0, 0] == 5
assert c.slices_original == (slice(1, 4), slice(1, 4))
assert c.slices_cutout == (slice(0, 3), slice(0, 3))
def test_size_angle(self):
c = Cutout2D(self.data, (2, 2), (0.1*u.arcsec), wcs=self.wcs)
assert c.data.shape == (2, 2)
assert c.data[0, 0] == 5
assert c.slices_original == (slice(1, 3), slice(1, 3))
assert c.slices_cutout == (slice(0, 2), slice(0, 2))
def test_size_angle_without_wcs(self):
with pytest.raises(ValueError):
Cutout2D(self.data, (2, 2), (3, 3* u.arcsec))
def test_cutout_trim_overlap(self):
c = Cutout2D(self.data, (0, 0), (3, 3), mode='trim')
assert c.data.shape == (2, 2)
assert c.data[0, 0] == 0
assert c.slices_original == (slice(0, 2), slice(0, 2))
assert c.slices_cutout == (slice(0, 2), slice(0, 2))
def test_cutout_partial_overlap(self):
c = Cutout2D(self.data, (0, 0), (3, 3), mode='partial')
assert c.data.shape == (3, 3)
assert c.data[1, 1] == 0
assert c.slices_original == (slice(0, 2), slice(0, 2))
assert c.slices_cutout == (slice(1, 3), slice(1, 3))
def test_cutout_partial_overlap_fill_value(self):
fill_value = -99
c = Cutout2D(self.data, (0, 0), (3, 3), mode='partial',
fill_value=fill_value)
assert c.data.shape == (3, 3)
assert c.data[1, 1] == 0
assert c.data[0, 0] == fill_value
def test_copy(self):
data = np.copy(self.data)
c = Cutout2D(data, (2, 3), (3, 3))
xy = (0, 0)
value = 100.
c.data[xy] = value
xy_orig = c.to_original_position(xy)
yx = xy_orig[::-1]
assert data[yx] == value
data = np.copy(self.data)
c2 = Cutout2D(self.data, (2, 3), (3, 3), copy=True)
c2.data[xy] = value
assert data[yx] != value
def test_to_from_large(self):
position = (2, 2)
c = Cutout2D(self.data, position, (3, 3))
xy = (0, 0)
result = c.to_cutout_position(c.to_original_position(xy))
assert_allclose(result, xy)
def test_skycoord_without_wcs(self):
with pytest.raises(ValueError):
Cutout2D(self.data, self.position, (3, 3))
def test_skycoord(self):
c = Cutout2D(self.data, self.position, (3, 3), wcs=self.wcs)
skycoord_original = self.position.from_pixel(c.center_original[1],
c.center_original[0],
self.wcs)
skycoord_cutout = self.position.from_pixel(c.center_cutout[1],
c.center_cutout[0], c.wcs)
assert_quantity_allclose(skycoord_original.ra, skycoord_cutout.ra)
assert_quantity_allclose(skycoord_original.dec, skycoord_cutout.dec)
def test_skycoord_partial(self):
c = Cutout2D(self.data, self.position, (3, 3), wcs=self.wcs,
mode='partial')
skycoord_original = self.position.from_pixel(c.center_original[1],
c.center_original[0],
self.wcs)
skycoord_cutout = self.position.from_pixel(c.center_cutout[1],
c.center_cutout[0], c.wcs)
assert_quantity_allclose(skycoord_original.ra, skycoord_cutout.ra)
assert_quantity_allclose(skycoord_original.dec, skycoord_cutout.dec)
|