1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Bayesian Blocks for Time Series Analysis
========================================
Dynamic programming algorithm for solving a piecewise-constant model for
various datasets. This is based on the algorithm presented in Scargle
et al 2012 [1]_. This code was ported from the astroML project [2]_.
Applications include:
- finding an optimal histogram with adaptive bin widths
- finding optimal segmentation of time series data
- detecting inflection points in the rate of event data
The primary interface to these routines is the :func:`bayesian_blocks`
function. This module provides fitness functions suitable for three types
of data:
- Irregularly-spaced event data via the :class:`Events` class
- Regularly-spaced event data via the :class:`RegularEvents` class
- Irregularly-spaced point measurements via the :class:`PointMeasures` class
For more fine-tuned control over the fitness functions used, it is possible
to define custom :class:`FitnessFunc` classes directly and use them with
the :func:`bayesian_blocks` routine.
One common application of the Bayesian Blocks algorithm is the determination
of optimal adaptive-width histogram bins. This uses the same fitness function
as for irregularly-spaced time series events. The easiest interface for
creating Bayesian Blocks histograms is the :func:`astropy.stats.histogram`
function.
References
----------
.. [1] http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
.. [2] http://astroML.org/ http://github.com/astroML/astroML/
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import warnings
import numpy as np
from ..utils.compat.funcsigs import signature
from ..utils.exceptions import AstropyUserWarning
from ..extern.six.moves import range
# TODO: implement other fitness functions from appendix B of Scargle 2012
__all__ = ['FitnessFunc', 'Events', 'RegularEvents', 'PointMeasures',
'bayesian_blocks']
def bayesian_blocks(t, x=None, sigma=None,
fitness='events', **kwargs):
r"""Compute optimal segmentation of data with Scargle's Bayesian Blocks
This is a flexible implementation of the Bayesian Blocks algorithm
described in Scargle 2012 [1]_.
Parameters
----------
t : array_like
data times (one dimensional, length N)
x : array_like (optional)
data values
sigma : array_like or float (optional)
data errors
fitness : str or object
the fitness function to use for the model.
If a string, the following options are supported:
- 'events' : binned or unbinned event data. Arguments are ``gamma``,
which gives the slope of the prior on the number of bins, or
``ncp_prior``, which is :math:`-\ln({\tt gamma})`.
- 'regular_events' : non-overlapping events measured at multiples of a
fundamental tick rate, ``dt``, which must be specified as an
additional argument. Extra arguments are ``p0``, which gives the
false alarm probability to compute the prior, or ``gamma``, which
gives the slope of the prior on the number of bins, or ``ncp_prior``,
which is :math:`-\ln({\tt gamma})`.
- 'measures' : fitness for a measured sequence with Gaussian errors.
Extra arguments are ``p0``, which gives the false alarm probability
to compute the prior, or ``gamma``, which gives the slope of the
prior on the number of bins, or ``ncp_prior``, which is
:math:`-\ln({\tt gamma})`.
In all three cases, if more than one of ``p0``, ``gamma``, and
``ncp_prior`` is chosen, ``ncp_prior`` takes precedence over ``gamma``
which takes precedence over ``p0``.
Alternatively, the fitness parameter can be an instance of
:class:`FitnessFunc` or a subclass thereof.
**kwargs :
any additional keyword arguments will be passed to the specified
:class:`FitnessFunc` derived class.
Returns
-------
edges : ndarray
array containing the (N+1) edges defining the N bins
Examples
--------
Event data:
>>> t = np.random.normal(size=100)
>>> edges = bayesian_blocks(t, fitness='events', p0=0.01)
Event data with repeats:
>>> t = np.random.normal(size=100)
>>> t[80:] = t[:20]
>>> edges = bayesian_blocks(t, fitness='events', p0=0.01)
Regular event data:
>>> dt = 0.01
>>> t = dt * np.arange(1000)
>>> x = np.zeros(len(t))
>>> x[np.random.randint(0, len(t), len(t) // 10)] = 1
>>> edges = bayesian_blocks(t, x, fitness='regular_events', dt=dt)
Measured point data with errors:
>>> t = 100 * np.random.random(100)
>>> x = np.exp(-0.5 * (t - 50) ** 2)
>>> sigma = 0.1
>>> x_obs = np.random.normal(x, sigma)
>>> edges = bayesian_blocks(t, x_obs, sigma, fitness='measures')
References
----------
.. [1] Scargle, J et al. (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
See Also
--------
astropy.stats.histogram : compute a histogram using bayesian blocks
"""
FITNESS_DICT = {'events': Events,
'regular_events': RegularEvents,
'measures': PointMeasures}
fitness = FITNESS_DICT.get(fitness, fitness)
if type(fitness) is type and issubclass(fitness, FitnessFunc):
fitfunc = fitness(**kwargs)
elif isinstance(fitness, FitnessFunc):
fitfunc = fitness
else:
raise ValueError("fitness parameter not understood")
return fitfunc.fit(t, x, sigma)
class FitnessFunc(object):
"""Base class for bayesian blocks fitness functions
Derived classes should overload the following method:
``fitness(self, **kwargs)``:
Compute the fitness given a set of named arguments.
Arguments accepted by fitness must be among ``[T_k, N_k, a_k, b_k, c_k]``
(See Scargle2012_ for details on the meaning of these parameters).
Additionally, other methods may be overloaded as well:
``__init__(self, **kwargs)``:
Initialize the fitness function with any parameters beyond the normal
``p0`` and ``gamma``.
``validate_input(self, t, x, sigma)``:
Enable specific checks of the input data (``t``, ``x``, ``sigma``)
to be performed prior to the fit.
``compute_ncp_prior(self, N)``: If ``ncp_prior`` is not defined explicitly,
this function is called in order to define it before fitting. This may be
calculated from ``gamma``, ``p0``, or whatever method you choose.
``p0_prior(self, N)``:
Specify the form of the prior given the false-alarm probability ``p0``
(See Scargle2012_ for details).
For examples of implemented fitness functions, see :class:`Events`,
:class:`RegularEvents`, and :class:`PointMeasures`.
References
----------
.. [Scargle2012] Scargle, J et al. (2012)
http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
"""
def __init__(self, p0=0.05, gamma=None, ncp_prior=None):
self.p0 = p0
self.gamma = gamma
self.ncp_prior = ncp_prior
def validate_input(self, t, x=None, sigma=None):
"""Validate inputs to the model.
Parameters
----------
t : array_like
times of observations
x : array_like (optional)
values observed at each time
sigma : float or array_like (optional)
errors in values x
Returns
-------
t, x, sigma : array_like, float or None
validated and perhaps modified versions of inputs
"""
# validate array input
t = np.asarray(t, dtype=float)
if x is not None:
x = np.asarray(x)
if sigma is not None:
sigma = np.asarray(sigma)
# find unique values of t
t = np.array(t)
if t.ndim != 1:
raise ValueError("t must be a one-dimensional array")
unq_t, unq_ind, unq_inv = np.unique(t, return_index=True,
return_inverse=True)
# if x is not specified, x will be counts at each time
if x is None:
if sigma is not None:
raise ValueError("If sigma is specified, x must be specified")
else:
sigma = 1
if len(unq_t) == len(t):
x = np.ones_like(t)
else:
x = np.bincount(unq_inv)
t = unq_t
# if x is specified, then we need to simultaneously sort t and x
else:
# TODO: allow broadcasted x?
x = np.asarray(x)
if x.shape not in [(), (1,), (t.size,)]:
raise ValueError("x does not match shape of t")
x += np.zeros_like(t)
if len(unq_t) != len(t):
raise ValueError("Repeated values in t not supported when "
"x is specified")
t = unq_t
x = x[unq_ind]
# verify the given sigma value
if sigma is None:
sigma = 1
else:
sigma = np.asarray(sigma)
if sigma.shape not in [(), (1,), (t.size,)]:
raise ValueError('sigma does not match the shape of x')
return t, x, sigma
def fitness(self, **kwargs):
raise NotImplementedError()
def p0_prior(self, N):
"""
Empirical prior, parametrized by the false alarm probability ``p0``
See eq. 21 in Scargle (2012)
Note that there was an error in this equation in the original Scargle
paper (the "log" was missing). The following corrected form is taken
from http://arxiv.org/abs/1304.2818
"""
return 4 - np.log(73.53 * self.p0 * (N ** -0.478))
# the fitness_args property will return the list of arguments accepted by
# the method fitness(). This allows more efficient computation below.
@property
def _fitness_args(self):
return signature(self.fitness).parameters.keys()
def compute_ncp_prior(self, N):
"""
If ``ncp_prior`` is not explicitly defined, compute it from ``gamma``
or ``p0``.
"""
if self.ncp_prior is not None:
return self.ncp_prior
elif self.gamma is not None:
return -np.log(self.gamma)
elif self.p0 is not None:
return self.p0_prior(N)
def fit(self, t, x=None, sigma=None):
"""Fit the Bayesian Blocks model given the specified fitness function.
Parameters
----------
t : array_like
data times (one dimensional, length N)
x : array_like (optional)
data values
sigma : array_like or float (optional)
data errors
Returns
-------
edges : ndarray
array containing the (M+1) edges defining the M optimal bins
"""
t, x, sigma = self.validate_input(t, x, sigma)
# compute values needed for computation, below
if 'a_k' in self._fitness_args:
ak_raw = np.ones_like(x) / sigma ** 2
if 'b_k' in self._fitness_args:
bk_raw = x / sigma ** 2
if 'c_k' in self._fitness_args:
ck_raw = x * x / sigma ** 2
# create length-(N + 1) array of cell edges
edges = np.concatenate([t[:1],
0.5 * (t[1:] + t[:-1]),
t[-1:]])
block_length = t[-1] - edges
# arrays to store the best configuration
N = len(t)
best = np.zeros(N, dtype=float)
last = np.zeros(N, dtype=int)
# Compute ncp_prior if not defined
if self.ncp_prior is None:
ncp_prior = self.compute_ncp_prior(N)
# ----------------------------------------------------------------
# Start with first data cell; add one cell at each iteration
# ----------------------------------------------------------------
for R in range(N):
# Compute fit_vec : fitness of putative last block (end at R)
kwds = {}
# T_k: width/duration of each block
if 'T_k' in self._fitness_args:
kwds['T_k'] = block_length[:R + 1] - block_length[R + 1]
# N_k: number of elements in each block
if 'N_k' in self._fitness_args:
kwds['N_k'] = np.cumsum(x[:R + 1][::-1])[::-1]
# a_k: eq. 31
if 'a_k' in self._fitness_args:
kwds['a_k'] = 0.5 * np.cumsum(ak_raw[:R + 1][::-1])[::-1]
# b_k: eq. 32
if 'b_k' in self._fitness_args:
kwds['b_k'] = - np.cumsum(bk_raw[:R + 1][::-1])[::-1]
# c_k: eq. 33
if 'c_k' in self._fitness_args:
kwds['c_k'] = 0.5 * np.cumsum(ck_raw[:R + 1][::-1])[::-1]
# evaluate fitness function
fit_vec = self.fitness(**kwds)
A_R = fit_vec - ncp_prior
A_R[1:] += best[:R]
i_max = np.argmax(A_R)
last[R] = i_max
best[R] = A_R[i_max]
# ----------------------------------------------------------------
# Now find changepoints by iteratively peeling off the last block
# ----------------------------------------------------------------
change_points = np.zeros(N, dtype=int)
i_cp = N
ind = N
while True:
i_cp -= 1
change_points[i_cp] = ind
if ind == 0:
break
ind = last[ind - 1]
change_points = change_points[i_cp:]
return edges[change_points]
class Events(FitnessFunc):
r"""Bayesian blocks fitness for binned or unbinned events
Parameters
----------
p0 : float (optional)
False alarm probability, used to compute the prior on
:math:`N_{\rm blocks}` (see eq. 21 of Scargle 2012). For the Events
type data, ``p0`` does not seem to be an accurate representation of the
actual false alarm probability. If you are using this fitness function
for a triggering type condition, it is recommended that you run
statistical trials on signal-free noise to determine an appropriate
value of ``gamma`` or ``ncp_prior`` to use for a desired false alarm
rate.
gamma : float (optional)
If specified, then use this gamma to compute the general prior form,
:math:`p \sim {\tt gamma}^{N_{\rm blocks}}`. If gamma is specified, p0
is ignored.
ncp_prior : float (optional)
If specified, use the value of ``ncp_prior`` to compute the prior as
above, using the definition :math:`{\tt ncp\_prior} = -\ln({\tt
gamma})`.
If ``ncp_prior`` is specified, ``gamma`` and ``p0`` is ignored.
"""
def __init__(self, p0=0.05, gamma=None, ncp_prior=None):
if p0 is not None and gamma is None and ncp_prior is None:
warnings.warn('p0 does not seem to accurately represent the false '
'positive rate for event data. It is highly '
'recommended that you run random trials on signal-'
'free noise to calibrate ncp_prior to achieve a '
'desired false positive rate.', AstropyUserWarning)
super(Events, self).__init__(p0, gamma, ncp_prior)
def fitness(self, N_k, T_k):
# eq. 19 from Scargle 2012
return N_k * (np.log(N_k) - np.log(T_k))
def validate_input(self, t, x, sigma):
t, x, sigma = super(Events, self).validate_input(t, x, sigma)
if x is not None and np.any(x % 1 > 0):
raise ValueError("x must be integer counts for fitness='events'")
return t, x, sigma
class RegularEvents(FitnessFunc):
r"""Bayesian blocks fitness for regular events
This is for data which has a fundamental "tick" length, so that all
measured values are multiples of this tick length. In each tick, there
are either zero or one counts.
Parameters
----------
dt : float
tick rate for data
p0 : float (optional)
False alarm probability, used to compute the prior on :math:`N_{\rm
blocks}` (see eq. 21 of Scargle 2012). If gamma is specified, p0 is
ignored.
ncp_prior : float (optional)
If specified, use the value of ``ncp_prior`` to compute the prior as
above, using the definition :math:`{\tt ncp\_prior} = -\ln({\tt
gamma})`. If ``ncp_prior`` is specified, ``gamma`` and ``p0`` are
ignored.
"""
def __init__(self, dt, p0=0.05, gamma=None, ncp_prior=None):
self.dt = dt
super(RegularEvents, self).__init__(p0, gamma, ncp_prior)
def validate_input(self, t, x, sigma):
t, x, sigma = super(RegularEvents, self).validate_input(t, x, sigma)
if not np.all((x == 0) | (x == 1)):
raise ValueError("Regular events must have only 0 and 1 in x")
return t, x, sigma
def fitness(self, T_k, N_k):
# Eq. 75 of Scargle 2012
M_k = T_k / self.dt
N_over_M = N_k / M_k
eps = 1E-8
if np.any(N_over_M > 1 + eps):
warnings.warn('regular events: N/M > 1. '
'Is the time step correct?', AstropyUserWarning)
one_m_NM = 1 - N_over_M
N_over_M[N_over_M <= 0] = 1
one_m_NM[one_m_NM <= 0] = 1
return N_k * np.log(N_over_M) + (M_k - N_k) * np.log(one_m_NM)
class PointMeasures(FitnessFunc):
r"""Bayesian blocks fitness for point measures
Parameters
----------
p0 : float (optional)
False alarm probability, used to compute the prior on :math:`N_{\rm
blocks}` (see eq. 21 of Scargle 2012). If gamma is specified, p0 is
ignored.
ncp_prior : float (optional)
If specified, use the value of ``ncp_prior`` to compute the prior as
above, using the definition :math:`{\tt ncp\_prior} = -\ln({\tt
gamma})`. If ``ncp_prior`` is specified, ``gamma`` and ``p0`` are
ignored.
"""
def __init__(self, p0=0.05, gamma=None, ncp_prior=None):
super(PointMeasures, self).__init__(p0, gamma, ncp_prior)
def fitness(self, a_k, b_k):
# eq. 41 from Scargle 2012
return (b_k * b_k) / (4 * a_k)
def validate_input(self, t, x, sigma):
if x is None:
raise ValueError("x must be specified for point measures")
return super(PointMeasures, self).validate_input(t, x, sigma)
|