1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy.testing import assert_allclose
from ...tests.helper import pytest
from .. import bayesian_blocks, RegularEvents
def test_single_change_point(rseed=0):
rng = np.random.RandomState(rseed)
x = np.concatenate([rng.rand(100),
1 + rng.rand(200)])
bins = bayesian_blocks(x)
assert (len(bins) == 3)
assert_allclose(bins[1], 1, rtol=0.02)
def test_duplicate_events(rseed=0):
rng = np.random.RandomState(rseed)
t = rng.rand(100)
t[80:] = t[:20]
x = np.ones_like(t)
x[:20] += 1
bins1 = bayesian_blocks(t)
bins2 = bayesian_blocks(t[:80], x[:80])
assert_allclose(bins1, bins2)
def test_measures_fitness_homoscedastic(rseed=0):
rng = np.random.RandomState(rseed)
t = np.linspace(0, 1, 11)
x = np.exp(-0.5 * (t - 0.5) ** 2 / 0.01 ** 2)
sigma = 0.05
x = x + sigma * rng.randn(len(x))
bins = bayesian_blocks(t, x, sigma, fitness='measures')
assert_allclose(bins, [0, 0.45, 0.55, 1])
def test_measures_fitness_heteroscedastic():
rng = np.random.RandomState(1)
t = np.linspace(0, 1, 11)
x = np.exp(-0.5 * (t - 0.5) ** 2 / 0.01 ** 2)
sigma = 0.02 + 0.02 * rng.rand(len(x))
x = x + sigma * rng.randn(len(x))
bins = bayesian_blocks(t, x, sigma, fitness='measures')
assert_allclose(bins, [0, 0.45, 0.55, 1])
def test_regular_events():
rng = np.random.RandomState(0)
dt = 0.01
steps = np.concatenate([np.unique(rng.randint(0, 500, 100)),
np.unique(rng.randint(500, 1000, 200))])
t = dt * steps
# string fitness
bins1 = bayesian_blocks(t, fitness='regular_events', dt=dt)
assert (len(bins1) == 3)
assert_allclose(bins1[1], 5, rtol=0.05)
# class name fitness
bins2 = bayesian_blocks(t, fitness=RegularEvents, dt=dt)
assert_allclose(bins1, bins2)
# class instance fitness
bins3 = bayesian_blocks(t, fitness=RegularEvents(dt=dt))
assert_allclose(bins1, bins3)
def test_errors():
rng = np.random.RandomState(0)
t = rng.rand(100)
# x must be integer or None for events
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='events', x=t)
# x must be binary for regular events
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='regular_events', x=10 * t, dt=1)
# x must be specified for measures
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='measures')
# sigma cannot be specified without x
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='events', sigma=0.5)
# length of x must match length of t
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='measures', x=t[:-1])
# repeated values in t fail when x is specified
t2 = t.copy()
t2[1] = t2[0]
with pytest.raises(ValueError):
bayesian_blocks(t2, fitness='measures', x=t)
# sigma must be broadcastable with x
with pytest.raises(ValueError):
bayesian_blocks(t, fitness='measures', x=t, sigma=t[:-1])
def test_fitness_function_results():
"""Test results for several fitness functions"""
rng = np.random.RandomState(42)
# Event Data
t = rng.randn(100)
edges = bayesian_blocks(t, fitness='events')
assert_allclose(edges, [-2.6197451, -0.71094865, 0.36866702, 1.85227818])
# Event data with repeats
t[80:] = t[:20]
edges = bayesian_blocks(t, fitness='events', p0=0.01)
assert_allclose(edges, [-2.6197451, -0.47432431, -0.46202823, 1.85227818])
# Regular event data
dt = 0.01
t = dt * np.arange(1000)
x = np.zeros(len(t))
N = len(t) // 10
x[rng.randint(0, len(t), N)] = 1
x[rng.randint(0, len(t) // 2, N)] = 1
edges = bayesian_blocks(t, x, fitness='regular_events', dt=dt)
assert_allclose(edges, [0, 5.105, 9.99])
# Measured point data with errors
t = 100 * rng.rand(20)
x = np.exp(-0.5 * (t - 50) ** 2)
sigma = 0.1
x_obs = x + sigma * rng.randn(len(x))
edges = bayesian_blocks(t, x_obs, sigma, fitness='measures')
assert_allclose(edges, [4.360377, 48.456895, 52.597917, 99.455051])
|