1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy.testing import assert_allclose
from ...tests.helper import pytest
from .. import histogram, scott_bin_width, freedman_bin_width, knuth_bin_width
try:
import scipy # pylint: disable=W0611
except ImportError:
HAS_SCIPY = False
else:
HAS_SCIPY = True
def test_scott_bin_width(N=10000, rseed=0):
rng = np.random.RandomState(rseed)
X = rng.randn(N)
delta = scott_bin_width(X)
assert_allclose(delta, 3.5 * np.std(X) / N ** (1 / 3))
delta, bins = scott_bin_width(X, return_bins=True)
assert_allclose(delta, 3.5 * np.std(X) / N ** (1 / 3))
with pytest.raises(ValueError):
scott_bin_width(rng.rand(2, 10))
def test_freedman_bin_width(N=10000, rseed=0):
rng = np.random.RandomState(rseed)
X = rng.randn(N)
v25, v75 = np.percentile(X, [25, 75])
delta = freedman_bin_width(X)
assert_allclose(delta, 2 * (v75 - v25) / N ** (1 / 3))
delta, bins = freedman_bin_width(X, return_bins=True)
assert_allclose(delta, 2 * (v75 - v25) / N ** (1 / 3))
with pytest.raises(ValueError):
freedman_bin_width(rng.rand(2, 10))
@pytest.mark.skipif('not HAS_SCIPY')
def test_knuth_bin_width(N=10000, rseed=0):
rng = np.random.RandomState(rseed)
X = rng.randn(N)
dx, bins = knuth_bin_width(X, return_bins=True)
assert_allclose(len(bins), 59)
dx2 = knuth_bin_width(X)
assert dx == dx2
with pytest.raises(ValueError):
knuth_bin_width(rng.rand(2, 10))
@pytest.mark.skipif('not HAS_SCIPY')
def test_knuth_histogram(N=1000, rseed=0):
rng = np.random.RandomState(rseed)
x = rng.randn(N)
counts, bins = histogram(x, 'knuth')
assert (counts.sum() == len(x))
assert (len(counts) == len(bins) - 1)
def test_histogram(N=1000, rseed=0):
rng = np.random.RandomState(rseed)
x = rng.randn(N)
for bins in [30, np.linspace(-5, 5, 31),
'scott', 'freedman', 'blocks']:
counts, bins = histogram(x, bins)
assert (counts.sum() == len(x))
assert (len(counts) == len(bins) - 1)
def test_histogram_range(N=1000, rseed=0):
rng = np.random.RandomState(rseed)
x = rng.randn(N)
range = (0.1, 0.8)
for bins in ['scott', 'freedman', 'blocks']:
counts, bins = histogram(x, bins, range=range)
@pytest.mark.skipif('not HAS_SCIPY')
def test_histogram_output_knuth():
rng = np.random.RandomState(0)
X = rng.randn(100)
counts, bins = histogram(X, bins='knuth')
assert_allclose(counts, [1, 6, 9, 14, 21, 22, 12, 8, 7])
assert_allclose(bins, [-2.55298982, -2.01712932, -1.48126883, -0.94540834,
-0.40954784, 0.12631265, 0.66217314, 1.19803364,
1.73389413, 2.26975462])
def test_histogram_output():
rng = np.random.RandomState(0)
X = rng.randn(100)
counts, bins = histogram(X, bins=10)
assert_allclose(counts, [1, 5, 7, 13, 17, 18, 16, 11, 7, 5])
assert_allclose(bins, [-2.55298982, -2.07071537, -1.58844093, -1.10616648,
-0.62389204, -0.1416176, 0.34065685, 0.82293129,
1.30520574, 1.78748018, 2.26975462])
counts, bins = histogram(X, bins='scott')
assert_allclose(counts, [2, 13, 23, 34, 16, 10, 2])
assert_allclose(bins, [-2.55298982, -1.79299405, -1.03299829, -0.27300252,
0.48699324, 1.24698901, 2.00698477, 2.76698054])
counts, bins = histogram(X, bins='freedman')
assert_allclose(counts, [2, 7, 13, 20, 26, 14, 11, 5, 2])
assert_allclose(bins, [-2.55298982, -1.95796338, -1.36293694, -0.7679105,
-0.17288406, 0.42214237, 1.01716881, 1.61219525,
2.20722169, 2.80224813])
counts, bins = histogram(X, bins='blocks')
assert_allclose(counts, [10, 61, 29])
assert_allclose(bins, [-2.55298982, -1.24381059, 0.46422235, 2.26975462])
def test_histogram_badargs(N=1000, rseed=0):
rng = np.random.RandomState(rseed)
x = rng.randn(N)
# weights is not supported
for bins in ['scott', 'freedman', 'blocks']:
with pytest.raises(NotImplementedError):
histogram(x, bins, weights=x)
# bad bins arg gives ValueError
with pytest.raises(ValueError):
histogram(x, bins='bad_argument')
|