File: test_histogram.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (143 lines) | stat: -rw-r--r-- 4,483 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Licensed under a 3-clause BSD style license - see LICENSE.rst

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import numpy as np
from numpy.testing import assert_allclose

from ...tests.helper import pytest
from .. import histogram, scott_bin_width, freedman_bin_width, knuth_bin_width

try:
    import scipy  # pylint: disable=W0611
except ImportError:
    HAS_SCIPY = False
else:
    HAS_SCIPY = True


def test_scott_bin_width(N=10000, rseed=0):
    rng = np.random.RandomState(rseed)
    X = rng.randn(N)

    delta = scott_bin_width(X)
    assert_allclose(delta,  3.5 * np.std(X) / N ** (1 / 3))

    delta, bins = scott_bin_width(X, return_bins=True)
    assert_allclose(delta,  3.5 * np.std(X) / N ** (1 / 3))

    with pytest.raises(ValueError):
        scott_bin_width(rng.rand(2, 10))


def test_freedman_bin_width(N=10000, rseed=0):
    rng = np.random.RandomState(rseed)
    X = rng.randn(N)

    v25, v75 = np.percentile(X, [25, 75])

    delta = freedman_bin_width(X)
    assert_allclose(delta, 2 * (v75 - v25) / N ** (1 / 3))

    delta, bins = freedman_bin_width(X, return_bins=True)
    assert_allclose(delta, 2 * (v75 - v25) / N ** (1 / 3))

    with pytest.raises(ValueError):
        freedman_bin_width(rng.rand(2, 10))


@pytest.mark.skipif('not HAS_SCIPY')
def test_knuth_bin_width(N=10000, rseed=0):
    rng = np.random.RandomState(rseed)
    X = rng.randn(N)

    dx, bins = knuth_bin_width(X, return_bins=True)
    assert_allclose(len(bins), 59)

    dx2 = knuth_bin_width(X)
    assert dx == dx2

    with pytest.raises(ValueError):
        knuth_bin_width(rng.rand(2, 10))


@pytest.mark.skipif('not HAS_SCIPY')
def test_knuth_histogram(N=1000, rseed=0):
    rng = np.random.RandomState(rseed)
    x = rng.randn(N)
    counts, bins = histogram(x, 'knuth')
    assert (counts.sum() == len(x))
    assert (len(counts) == len(bins) - 1)


def test_histogram(N=1000, rseed=0):
    rng = np.random.RandomState(rseed)
    x = rng.randn(N)

    for bins in [30, np.linspace(-5, 5, 31),
                 'scott', 'freedman', 'blocks']:
        counts, bins = histogram(x, bins)
        assert (counts.sum() == len(x))
        assert (len(counts) == len(bins) - 1)


def test_histogram_range(N=1000, rseed=0):
    rng = np.random.RandomState(rseed)
    x = rng.randn(N)
    range = (0.1, 0.8)

    for bins in ['scott', 'freedman', 'blocks']:
        counts, bins = histogram(x, bins, range=range)


@pytest.mark.skipif('not HAS_SCIPY')
def test_histogram_output_knuth():
    rng = np.random.RandomState(0)
    X = rng.randn(100)

    counts, bins = histogram(X, bins='knuth')
    assert_allclose(counts, [1, 6, 9, 14, 21, 22, 12, 8, 7])
    assert_allclose(bins, [-2.55298982, -2.01712932, -1.48126883, -0.94540834,
                           -0.40954784, 0.12631265, 0.66217314, 1.19803364,
                           1.73389413, 2.26975462])


def test_histogram_output():
    rng = np.random.RandomState(0)
    X = rng.randn(100)

    counts, bins = histogram(X, bins=10)
    assert_allclose(counts, [1, 5, 7, 13, 17, 18, 16, 11, 7, 5])
    assert_allclose(bins, [-2.55298982, -2.07071537, -1.58844093, -1.10616648,
                           -0.62389204, -0.1416176, 0.34065685, 0.82293129,
                           1.30520574, 1.78748018, 2.26975462])

    counts, bins = histogram(X, bins='scott')
    assert_allclose(counts, [2, 13, 23, 34, 16, 10, 2])
    assert_allclose(bins, [-2.55298982, -1.79299405, -1.03299829, -0.27300252,
                           0.48699324, 1.24698901, 2.00698477, 2.76698054])

    counts, bins = histogram(X, bins='freedman')
    assert_allclose(counts, [2, 7, 13, 20, 26, 14, 11, 5, 2])
    assert_allclose(bins, [-2.55298982, -1.95796338, -1.36293694, -0.7679105,
                           -0.17288406, 0.42214237, 1.01716881, 1.61219525,
                           2.20722169, 2.80224813])

    counts, bins = histogram(X, bins='blocks')
    assert_allclose(counts, [10, 61, 29])
    assert_allclose(bins, [-2.55298982, -1.24381059,  0.46422235,  2.26975462])


def test_histogram_badargs(N=1000, rseed=0):
    rng = np.random.RandomState(rseed)
    x = rng.randn(N)

    # weights is not supported
    for bins in ['scott', 'freedman', 'blocks']:
        with pytest.raises(NotImplementedError):
            histogram(x, bins, weights=x)

    # bad bins arg gives ValueError
    with pytest.raises(ValueError):
        histogram(x, bins='bad_argument')