File: index.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (854 lines) | stat: -rw-r--r-- 28,116 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
The Index class can use several implementations as its
engine. Any implementation should implement the following:

__init__(data, row_index) : initialize index based on key/row list pairs
add(key, row) -> None : add (key, row) to existing data
remove(key, data=None) -> boolean : remove data from self[key], or all of
                                    self[key] if data is None
shift_left(row) -> None : decrement row numbers after row
shift_right(row) -> None : increase row numbers >= row
find(key) -> list : list of rows corresponding to key
range(lower, upper, bounds) -> list : rows in self[k] where k is between
                               lower and upper (<= or < based on bounds)
sort() -> None : make row order align with key order
sorted_data() -> list of rows in sorted order (by key)
replace_rows(row_map) -> None : replace row numbers based on slice
items() -> list of tuples of the form (key, data)

Notes
-----
    When a Table is initialized from another Table, indices are
    (deep) copied and their columns are set to the columns of the new Table.

    Column creation:
    Column(c) -> deep copy of indices
    c[[1, 2]] -> deep copy and reordering of indices
    c[1:2] -> reference
    array.view(Column) -> no indices
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from copy import deepcopy
import numpy as np

from ..extern import six
from ..extern.six.moves import range
from .bst import MinValue, MaxValue
from .sorted_array import SortedArray
from ..time import Time


class QueryError(ValueError):
    '''
    Indicates that a given index cannot handle the supplied query.
    '''
    pass


class Index(object):
    '''
    The Index class makes it possible to maintain indices
    on columns of a Table, so that column values can be queried
    quickly and efficiently. Column values are stored in lexicographic
    sorted order, which allows for binary searching in O(log n).

    Parameters
    ----------
    columns : list or None
        List of columns on which to create an index. If None,
        create an empty index for purposes of deep copying.
    engine : type, instance, or None
        Indexing engine class to use (from among SortedArray, BST,
        FastBST, and FastRBT) or actual engine instance.
        If the supplied argument is None (by default), use SortedArray.
    unique : bool (defaults to False)
        Whether the values of the index must be unique
    '''
    def __new__(cls, *args, **kwargs):
        self = super(Index, cls).__new__(cls)

        # If (and only if) unpickling for protocol >= 2, then args and kwargs
        # are both empty.  The class __init__ requires at least the `columns`
        # arg.  In this case return a bare `Index` object which is then morphed
        # by the unpickling magic into the correct SlicedIndex object.
        if not args and not kwargs:
            return self

        self.__init__(*args, **kwargs)
        return SlicedIndex(self, slice(0, 0, None), original=True)

    def __init__(self, columns, engine=None, unique=False):
        from .table import Table, Column

        if engine is not None and not isinstance(engine, type):
            # create from data
            self.engine = engine.__class__
            self.data = engine
            self.columns = columns
            return

        # by default, use SortedArray
        self.engine = engine or SortedArray

        if columns is None: # this creates a special exception for deep copying
            columns = []
            data = []
            row_index = []
        elif len(columns) == 0:
            raise ValueError("Cannot create index without at least one column")
        elif len(columns) == 1:
            col = columns[0]
            row_index = Column(col.argsort())
            data = Table([col[row_index]])
        else:
            num_rows = len(columns[0])

            # replace Time columns with approximate form and remainder
            new_columns = []
            for col in columns:
                if isinstance(col, Time):
                    new_columns.append(col.jd)
                    remainder = col - col.__class__(col.jd, format='jd')
                    new_columns.append(remainder.jd)
                else:
                    new_columns.append(col)

            # sort the table lexicographically and keep row numbers
            table = Table(columns + [np.arange(num_rows)], copy_indices=False)
            sort_columns = new_columns[::-1]
            try:
                lines = table[np.lexsort(sort_columns)]
            except TypeError: # arbitrary mixins might not work with lexsort
                lines = table[table.argsort()]
            data = lines[lines.colnames[:-1]]
            row_index = lines[lines.colnames[-1]]

        self.data = self.engine(data, row_index, unique=unique)
        self.columns = columns

    def __len__(self):
        '''
        Number of rows in index.
        '''
        return len(self.columns[0])

    def replace_col(self, prev_col, new_col):
        '''
        Replace an indexed column with an updated reference.

        Parameters
        ----------
        prev_col : Column
            Column reference to replace
        new_col : Column
            New column reference
        '''
        self.columns[self.col_position(prev_col.info.name)] = new_col

    def reload(self):
        '''
        Recreate the index based on data in self.columns.
        '''
        self.__init__(self.columns, engine=self.engine)

    def col_position(self, col_name):
        '''
        Return the position of col_name in self.columns.

        Parameters
        ----------
        col_name : str
            Name of column to look up
        '''
        for i, c in enumerate(self.columns):
            if c.info.name == col_name:
                return i
        raise ValueError("Column does not belong to index: {0}".format(col_name))

    def insert_row(self, pos, vals, columns):
        '''
        Insert a new row from the given values.

        Parameters
        ----------
        pos : int
            Position at which to insert row
        vals : list or tuple
            List of values to insert into a new row
        columns : list
            Table column references
        '''
        key = [None] * len(self.columns)
        for i, col in enumerate(columns):
            try:
                key[i] = vals[self.col_position(col.info.name)]
            except ValueError: # not a member of index
                continue
        num_rows = len(self.columns[0])
        if pos < num_rows:
            # shift all rows >= pos to the right
            self.data.shift_right(pos)
        self.data.add(tuple(key), pos)

    def get_row_specifier(self, row_specifier):
        '''
        Return an iterable corresponding to the
        input row specifier.

        Parameters
        ----------
        row_specifier : int, list, ndarray, or slice
        '''
        if isinstance(row_specifier, (int, np.integer)):
            # single row
            return (row_specifier,)
        elif isinstance(row_specifier, (list, np.ndarray)):
            return row_specifier
        elif isinstance(row_specifier, slice):
            col_len = len(self.columns[0])
            return range(*row_specifier.indices(col_len))
        raise ValueError("Expected int, array of ints, or slice but "
                         "got {0} in remove_rows".format(row_specifier))

    def remove_rows(self, row_specifier):
        '''
        Remove the given rows from the index.

        Parameters
        ----------
        row_specifier : int, list, ndarray, or slice
            Indicates which row(s) to remove
        '''
        rows = []

        # To maintain the correct row order, we loop twice,
        # deleting rows first and then reordering the remaining rows
        for row in self.get_row_specifier(row_specifier):
            self.remove_row(row, reorder=False)
            rows.append(row)
        # second pass - row order is reversed to maintain
        # correct row numbers
        for row in reversed(sorted(rows)):
            self.data.shift_left(row)

    def remove_row(self, row, reorder=True):
        '''
        Remove the given row from the index.

        Parameters
        ----------
        row : int
            Position of row to remove
        reorder : bool
            Whether to reorder indices after removal
        '''
        # for removal, form a key consisting of column values in this row
        if not self.data.remove(tuple([col[row] for col in self.columns]), row):
            raise ValueError("Could not remove row {0} from index".format(row))
        # decrement the row number of all later rows
        if reorder:
            self.data.shift_left(row)

    def find(self, key):
        '''
        Return the row values corresponding to key, in sorted order.

        Parameters
        ----------
        key : tuple
            Values to search for in each column
        '''
        return self.data.find(key)

    def same_prefix(self, key):
        '''
        Return rows whose keys contain the supplied key as a prefix.

        Parameters
        ----------
        key : tuple
            Prefix for which to search
        '''
        return self.same_prefix_range(key, key, (True, True))

    def same_prefix_range(self, lower, upper, bounds=(True, True)):
        '''
        Return rows whose keys have a prefix in the given range.

        Parameters
        ----------
        lower : tuple
            Lower prefix bound
        upper : tuple
            Upper prefix bound
        bounds : tuple (x, y) of bools
            Indicates whether the search should be inclusive or
            exclusive with respect to the endpoints. The first
            argument x corresponds to an inclusive lower bound,
            and the second argument y to an inclusive upper bound.
        '''
        n = len(lower)
        ncols = len(self.columns)
        a = MinValue() if bounds[0] else MaxValue()
        b = MaxValue() if bounds[1] else MinValue()
        # [x, y] search corresponds to [(x, min), (y, max)]
        # (x, y) search corresponds to ((x, max), (x, min))
        lower = lower + tuple((ncols - n) * [a])
        upper = upper + tuple((ncols - n) * [b])
        return self.data.range(lower, upper, bounds)

    def range(self, lower, upper, bounds=(True, True)):
        '''
        Return rows within the given range.

        Parameters
        ----------
        lower : tuple
            Lower prefix bound
        upper : tuple
            Upper prefix bound
        bounds : tuple (x, y) of bools
            Indicates whether the search should be inclusive or
            exclusive with respect to the endpoints. The first
            argument x corresponds to an inclusive lower bound,
            and the second argument y to an inclusive upper bound.
        '''
        return self.data.range(lower, upper, bounds)

    def replace(self, row, col_name, val):
        '''
        Replace the value of a column at a given position.

        Parameters
        ----------
        row : int
            Row number to modify
        col_name : str
            Name of the Column to modify
        val : col.info.dtype
            Value to insert at specified row of col
        '''
        self.remove_row(row, reorder=False)
        key = [c[row] for c in self.columns]
        key[self.col_position(col_name)] = val
        self.data.add(tuple(key), row)

    def replace_rows(self, col_slice):
        '''
        Modify rows in this index to agree with the specified
        slice. For example, given an index
        {'5': 1, '2': 0, '3': 2} on a column ['2', '5', '3'],
        an input col_slice of [2, 0] will result in the relabeling
        {'3': 0, '2': 1} on the sliced column ['3', '2'].

        Parameters
        ----------
        col_slice : list
            Indices to slice
        '''
        row_map = dict((row, i) for i, row in enumerate(col_slice))
        self.data.replace_rows(row_map)

    def sort(self):
        '''
        Make row numbers follow the same sort order as the keys
        of the index.
        '''
        self.data.sort()

    def sorted_data(self):
        '''
        Returns a list of rows in sorted order based on keys;
        essentially acts as an argsort() on columns.
        '''
        return self.data.sorted_data()

    def __getitem__(self, item):
        '''
        Returns a sliced version of this index.

        Parameters
        ----------
        item : slice
            Input slice

        Returns
        -------
        SlicedIndex
            A sliced reference to this index.
        '''
        return SlicedIndex(self, item)

    def __str__(self):
        return str(self.data)

    def __repr__(self):
        return str(self)

    def __deepcopy__(self, memo):
        '''
        Return a deep copy of this index.

        Notes
        -----
        The default deep copy must be overridden to perform
        a shallow copy of the index columns, avoiding infinite recursion.

        Parameters
        ----------
        memo : dict
        '''
        num_cols = self.data.num_cols if self.engine == SortedArray else None
        # create an actual Index, not a SlicedIndex
        index = super(Index, Index).__new__(Index)
        index.__init__(None, engine=self.engine)
        index.data = deepcopy(self.data, memo)
        index.columns = self.columns[:] # new list, same columns
        memo[id(self)] = index
        return index


class SlicedIndex(object):
    '''
    This class provides a wrapper around an actual Index object
    to make index slicing function correctly. Since numpy expects
    array slices to provide an actual data view, a SlicedIndex should
    retrieve data directly from the original index and then adapt
    it to the sliced coordinate system as appropriate.

    Parameters
    ----------
    index : Index
        The original Index reference
    index_slice : slice
        The slice to which this SlicedIndex corresponds
    original : bool
        Whether this SlicedIndex represents the original index itself.
        For the most part this is similar to index[:] but certain
        copying operations are avoided, and the slice retains the
        length of the actual index despite modification.
    '''
    def __init__(self, index, index_slice, original=False):
        self.index = index
        self.original = original
        self._frozen = False

        if isinstance(index_slice, tuple):
            self.start, self._stop, self.step = index_slice
        else: # index_slice is an actual slice
            num_rows = len(index.columns[0])
            self.start, self._stop, self.step = index_slice.indices(num_rows)

    @property
    def length(self):
        return 1 + (self.stop - self.start - 1) // self.step

    @property
    def stop(self):
        '''
        The stopping position of the slice, or the end of the
        index if this is an original slice.
        '''
        return len(self.index) if self.original else self._stop

    def __getitem__(self, item):
        '''
        Returns another slice of this Index slice.

        Parameters
        ----------
        item : slice
            Index slice
        '''
        if self.length <= 0:
            # empty slice
            return SlicedIndex(self.index, slice(1, 0))
        start, stop, step = item.indices(self.length)
        new_start = self.orig_coords(start)
        new_stop = self.orig_coords(stop)
        new_step = self.step * step
        return SlicedIndex(self.index, (new_start, new_stop, new_step))

    def sliced_coords(self, rows):
        '''
        Convert the input rows to the sliced coordinate system.

        Parameters
        ----------
        rows : list
            Rows in the original coordinate system

        Returns
        -------
        sliced_rows : list
            Rows in the sliced coordinate system
        '''
        if self.original:
            return rows
        else:
            rows = np.array(rows)
            row0 = rows - self.start
            if self.step != 1:
                correct_mod = np.mod(row0, self.step) == 0
                row0 = row0[correct_mod]
            if self.step > 0:
                ok = (row0 >= 0) & (row0 < self.stop - self.start)
            else:
                ok = (row0 <= 0) & (row0 > self.stop - self.start)
            return row0[ok] // self.step

    def orig_coords(self, row):
        '''
        Convert the input row from sliced coordinates back
        to original coordinates.

        Parameters
        ----------
        row : int
            Row in the sliced coordinate system

        Returns
        -------
        orig_row : int
            Row in the original coordinate system
        '''
        return row if self.original else self.start + row * self.step

    def find(self, key):
        return self.sliced_coords(self.index.find(key))

    def where(self, col_map):
        return self.sliced_coords(self.index.where(col_map))

    def range(self, lower, upper):
        return self.sliced_coords(self.index.range(lower, upper))

    def same_prefix(self, key):
        return self.sliced_coords(self.index.same_prefix(key))

    def sorted_data(self):
        return self.sliced_coords(self.index.sorted_data())

    def replace(self, row, col, val):
        if not self._frozen:
            self.index.replace(self.orig_coords(row), col, val)

    def copy(self):
        if not self.original:
            # replace self.index with a new object reference
            self.index = deepcopy(self.index)
        return self.index

    def insert_row(self, pos, vals, columns):
        if not self._frozen:
            self.copy().insert_row(self.orig_coords(pos), vals,
                                   columns)

    def get_row_specifier(self, row_specifier):
        return [self.orig_coords(x) for x in
                self.index.get_row_specifier(row_specifier)]

    def remove_rows(self, row_specifier):
        if not self._frozen:
            self.copy().remove_rows(row_specifier)

    def replace_rows(self, col_slice):
        if not self._frozen:
            self.index.replace_rows([self.orig_coords(x) for x in col_slice])

    def sort(self):
        if not self._frozen:
            self.copy().sort()

    def __repr__(self):
        if self.original:
            return repr(self.index)
        return 'Index slice {0} of\n{1}'.format(
            (self.start, self.stop, self.step), self.index)

    def __str__(self):
        return repr(self)

    def replace_col(self, prev_col, new_col):
        self.index.replace_col(prev_col, new_col)

    def reload(self):
        self.index.reload()

    def col_position(self, col_name):
        return self.index.col_position(col_name)

    def get_slice(self, col_slice, item):
        '''
        Return a newly created index from the given slice.

        Parameters
        ----------
        col_slice : Column object
            Already existing slice of a single column
        item : list or ndarray
            Slice for retrieval
        '''
        from .table import Table
        if len(self.columns) == 1:
            return Index([col_slice], engine=self.data.__class__)
        t = Table(self.columns, copy_indices=False)
        with t.index_mode('discard_on_copy'):
            new_cols = t[item].columns.values()
        return Index(new_cols, engine=self.data.__class__)

    @property
    def columns(self):
        return self.index.columns

    @property
    def data(self):
        return self.index.data


def get_index(table, table_copy):
    '''
    Inputs a table and some subset of its columns, and
    returns an index corresponding to this subset or None
    if no such index exists.

    Parameters
    ----------
    table : `Table`
        Input table
    table_copy : `Table`
        Subset of the columns in the table argument
    '''
    cols = set(table_copy.columns)
    indices = set()
    for column in cols:
        for index in table[column].info.indices:
            if set([x.info.name for x in index.columns]) == cols:
                return index
    return None


class _IndexModeContext(object):
    '''
    A context manager that allows for special indexing modes, which
    are intended to improve performance. Currently the allowed modes
    are "freeze", in which indices are not modified upon column modification,
    "copy_on_getitem", in which indices are copied upon column slicing,
    and "discard_on_copy", in which indices are discarded upon table
    copying/slicing.
    '''

    _col_subclasses = {}

    def __init__(self, table, mode):
        '''
        Parameters
        ----------
        table : Table
            The table to which the mode should be applied
        mode : str
            Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'.
            In 'discard_on_copy' mode,
            indices are not copied whenever columns or tables are copied.
            In 'freeze' mode, indices are not modified whenever columns are
            modified; at the exit of the context, indices refresh themselves
            based on column values. This mode is intended for scenarios in
            which one intends to make many additions or modifications on an
            indexed column.
            In 'copy_on_getitem' mode, indices are copied when taking column
            slices as well as table slices, so col[i0:i1] will preserve
            indices.
        '''
        self.table = table
        self.mode = mode
        # Used by copy_on_getitem
        self._orig_classes = []
        if mode not in ('freeze', 'discard_on_copy', 'copy_on_getitem'):
            raise ValueError("Expected a mode of either 'freeze', "
                             "'discard_on_copy', or 'copy_on_getitem', got "
                             "'{0}'".format(mode))

    def __enter__(self):
        if self.mode == 'discard_on_copy':
            self.table._copy_indices = False
        elif self.mode == 'copy_on_getitem':
            for col in self.table.columns.values():
                self._orig_classes.append(col.__class__)
                col.__class__ = self._get_copy_on_getitem_shim(col.__class__)
        else:
            for index in self.table.indices:
                index._frozen = True

    def __exit__(self, exc_type, exc_value, traceback):
        if self.mode == 'discard_on_copy':
            self.table._copy_indices = True
        elif self.mode == 'copy_on_getitem':
            for col in reversed(self.table.columns.values()):
                col.__class__ = self._orig_classes.pop()
        else:
            for index in self.table.indices:
                index._frozen = False
                index.reload()

    def _get_copy_on_getitem_shim(self, cls):
        """
        This creates a subclass of the column's class which overrides that
        class's ``__getitem__``, such that when returning a slice of the
        column, the relevant indices are also copied over to the slice.

        Ideally, rather than shimming in a new ``__class__`` we would be able
        to just flip a flag that is checked by the base class's
        ``__getitem__``.  Unfortunately, since the flag needs to be a Python
        variable, this slows down ``__getitem__`` too much in the more common
        case where a copy of the indices is not needed.  See the docstring for
        ``astropy.table._column_mixins`` for more information on that.
        """

        if cls in self._col_subclasses:
            return self._col_subclasses[cls]

        def __getitem__(self, item):
            value = cls.__getitem__(self, item)
            if type(value) is type(self):
                value = self.info.slice_indices(value, item, len(self))

            return value

        clsname = '_{0}WithIndexCopy'.format(cls.__name__)

        new_cls = type(str(clsname), (cls,), {'__getitem__': __getitem__})

        self._col_subclasses[cls] = new_cls

        return new_cls


class TableIndices(list):
    '''
    A special list of table indices allowing
    for retrieval by column name(s).

    Parameters
    ----------
    lst : list
        List of indices
    '''
    def __init__(self, lst):
        super(TableIndices, self).__init__(lst)

    def __getitem__(self, item):
        '''
        Retrieve an item from the list of indices.

        Parameters
        ----------
        item : int, str, tuple, or list
            Position in list or name(s) of indexed column(s)
        '''
        if isinstance(item, six.string_types):
            item = [item]
        if isinstance(item, (list, tuple)):
            item = list(item)
            for index in self:
                try:
                    for name in item:
                        index.col_position(name)
                    if len(index.columns) == len(item):
                        return index
                except ValueError:
                    pass
            # index search failed
            raise IndexError("No index found for {0}".format(item))

        return super(TableIndices, self).__getitem__(item)


class TableLoc(object):
    '''
    A pseudo-list of Table rows allowing for retrieval
    of rows by indexed column values.

    Parameters
    ----------
    table : Table
        Indexed table to use
    '''
    def __init__(self, table):
        self.table = table
        self.indices = table.indices
        if len(self.indices) == 0:
            raise ValueError("Cannot create TableLoc object with no indices")

    def __getitem__(self, item):
        '''
        Retrieve Table rows by value slice.

        Parameters
        ----------
        item : column element, list, ndarray, slice or tuple
            Can be a value of the table primary index, a list/ndarray
            of such values, or a value slice (both endpoints are included).
            If a tuple is provided, the first element must be
            an index to use instead of the primary key, and the
            second element must be as above.
        '''

        if isinstance(item, tuple):
            key, item = item
        else:
            key = self.table.primary_key

        index = self.indices[key]
        if len(index.columns) > 1:
            raise ValueError("Cannot use .loc on multi-column indices")

        if isinstance(item, slice):
            # None signifies no upper/lower bound
            start = MinValue() if item.start is None else item.start
            stop = MaxValue() if item.stop is None else item.stop
            rows = index.range((start,), (stop,))
        else:
            if not isinstance(item, (list, np.ndarray)): # single element
                item = [item]
            # item should be a list or ndarray of values
            rows = []
            for key in item:
                rows.extend(index.find((key,)))

        if len(rows) == 0: # no matches found
            raise KeyError('No matches found for key {0}'.format(item))
        elif len(rows) == 1: # single row
            return self.table[rows[0]]
        return self.table[rows]


class TableILoc(TableLoc):
    '''
    A variant of TableLoc allowing for row retrieval by
    indexed order rather than data values.

    Parameters
    ----------
    table : Table
        Indexed table to use
    '''
    def __init__(self, table):
        super(TableILoc, self).__init__(table)

    def __getitem__(self, item):
        if isinstance(item, tuple):
            key, item = item
        else:
            key = self.table.primary_key
        index = self.indices[key]
        rows = index.sorted_data()[item]
        table_slice = self.table[rows]

        if len(table_slice) == 0: # no matches found
            raise IndexError('Invalid index for iloc: {0}'.format(item))

        return table_slice