1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
The Index class can use several implementations as its
engine. Any implementation should implement the following:
__init__(data, row_index) : initialize index based on key/row list pairs
add(key, row) -> None : add (key, row) to existing data
remove(key, data=None) -> boolean : remove data from self[key], or all of
self[key] if data is None
shift_left(row) -> None : decrement row numbers after row
shift_right(row) -> None : increase row numbers >= row
find(key) -> list : list of rows corresponding to key
range(lower, upper, bounds) -> list : rows in self[k] where k is between
lower and upper (<= or < based on bounds)
sort() -> None : make row order align with key order
sorted_data() -> list of rows in sorted order (by key)
replace_rows(row_map) -> None : replace row numbers based on slice
items() -> list of tuples of the form (key, data)
Notes
-----
When a Table is initialized from another Table, indices are
(deep) copied and their columns are set to the columns of the new Table.
Column creation:
Column(c) -> deep copy of indices
c[[1, 2]] -> deep copy and reordering of indices
c[1:2] -> reference
array.view(Column) -> no indices
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from copy import deepcopy
import numpy as np
from ..extern import six
from ..extern.six.moves import range
from .bst import MinValue, MaxValue
from .sorted_array import SortedArray
from ..time import Time
class QueryError(ValueError):
'''
Indicates that a given index cannot handle the supplied query.
'''
pass
class Index(object):
'''
The Index class makes it possible to maintain indices
on columns of a Table, so that column values can be queried
quickly and efficiently. Column values are stored in lexicographic
sorted order, which allows for binary searching in O(log n).
Parameters
----------
columns : list or None
List of columns on which to create an index. If None,
create an empty index for purposes of deep copying.
engine : type, instance, or None
Indexing engine class to use (from among SortedArray, BST,
FastBST, and FastRBT) or actual engine instance.
If the supplied argument is None (by default), use SortedArray.
unique : bool (defaults to False)
Whether the values of the index must be unique
'''
def __new__(cls, *args, **kwargs):
self = super(Index, cls).__new__(cls)
# If (and only if) unpickling for protocol >= 2, then args and kwargs
# are both empty. The class __init__ requires at least the `columns`
# arg. In this case return a bare `Index` object which is then morphed
# by the unpickling magic into the correct SlicedIndex object.
if not args and not kwargs:
return self
self.__init__(*args, **kwargs)
return SlicedIndex(self, slice(0, 0, None), original=True)
def __init__(self, columns, engine=None, unique=False):
from .table import Table, Column
if engine is not None and not isinstance(engine, type):
# create from data
self.engine = engine.__class__
self.data = engine
self.columns = columns
return
# by default, use SortedArray
self.engine = engine or SortedArray
if columns is None: # this creates a special exception for deep copying
columns = []
data = []
row_index = []
elif len(columns) == 0:
raise ValueError("Cannot create index without at least one column")
elif len(columns) == 1:
col = columns[0]
row_index = Column(col.argsort())
data = Table([col[row_index]])
else:
num_rows = len(columns[0])
# replace Time columns with approximate form and remainder
new_columns = []
for col in columns:
if isinstance(col, Time):
new_columns.append(col.jd)
remainder = col - col.__class__(col.jd, format='jd')
new_columns.append(remainder.jd)
else:
new_columns.append(col)
# sort the table lexicographically and keep row numbers
table = Table(columns + [np.arange(num_rows)], copy_indices=False)
sort_columns = new_columns[::-1]
try:
lines = table[np.lexsort(sort_columns)]
except TypeError: # arbitrary mixins might not work with lexsort
lines = table[table.argsort()]
data = lines[lines.colnames[:-1]]
row_index = lines[lines.colnames[-1]]
self.data = self.engine(data, row_index, unique=unique)
self.columns = columns
def __len__(self):
'''
Number of rows in index.
'''
return len(self.columns[0])
def replace_col(self, prev_col, new_col):
'''
Replace an indexed column with an updated reference.
Parameters
----------
prev_col : Column
Column reference to replace
new_col : Column
New column reference
'''
self.columns[self.col_position(prev_col.info.name)] = new_col
def reload(self):
'''
Recreate the index based on data in self.columns.
'''
self.__init__(self.columns, engine=self.engine)
def col_position(self, col_name):
'''
Return the position of col_name in self.columns.
Parameters
----------
col_name : str
Name of column to look up
'''
for i, c in enumerate(self.columns):
if c.info.name == col_name:
return i
raise ValueError("Column does not belong to index: {0}".format(col_name))
def insert_row(self, pos, vals, columns):
'''
Insert a new row from the given values.
Parameters
----------
pos : int
Position at which to insert row
vals : list or tuple
List of values to insert into a new row
columns : list
Table column references
'''
key = [None] * len(self.columns)
for i, col in enumerate(columns):
try:
key[i] = vals[self.col_position(col.info.name)]
except ValueError: # not a member of index
continue
num_rows = len(self.columns[0])
if pos < num_rows:
# shift all rows >= pos to the right
self.data.shift_right(pos)
self.data.add(tuple(key), pos)
def get_row_specifier(self, row_specifier):
'''
Return an iterable corresponding to the
input row specifier.
Parameters
----------
row_specifier : int, list, ndarray, or slice
'''
if isinstance(row_specifier, (int, np.integer)):
# single row
return (row_specifier,)
elif isinstance(row_specifier, (list, np.ndarray)):
return row_specifier
elif isinstance(row_specifier, slice):
col_len = len(self.columns[0])
return range(*row_specifier.indices(col_len))
raise ValueError("Expected int, array of ints, or slice but "
"got {0} in remove_rows".format(row_specifier))
def remove_rows(self, row_specifier):
'''
Remove the given rows from the index.
Parameters
----------
row_specifier : int, list, ndarray, or slice
Indicates which row(s) to remove
'''
rows = []
# To maintain the correct row order, we loop twice,
# deleting rows first and then reordering the remaining rows
for row in self.get_row_specifier(row_specifier):
self.remove_row(row, reorder=False)
rows.append(row)
# second pass - row order is reversed to maintain
# correct row numbers
for row in reversed(sorted(rows)):
self.data.shift_left(row)
def remove_row(self, row, reorder=True):
'''
Remove the given row from the index.
Parameters
----------
row : int
Position of row to remove
reorder : bool
Whether to reorder indices after removal
'''
# for removal, form a key consisting of column values in this row
if not self.data.remove(tuple([col[row] for col in self.columns]), row):
raise ValueError("Could not remove row {0} from index".format(row))
# decrement the row number of all later rows
if reorder:
self.data.shift_left(row)
def find(self, key):
'''
Return the row values corresponding to key, in sorted order.
Parameters
----------
key : tuple
Values to search for in each column
'''
return self.data.find(key)
def same_prefix(self, key):
'''
Return rows whose keys contain the supplied key as a prefix.
Parameters
----------
key : tuple
Prefix for which to search
'''
return self.same_prefix_range(key, key, (True, True))
def same_prefix_range(self, lower, upper, bounds=(True, True)):
'''
Return rows whose keys have a prefix in the given range.
Parameters
----------
lower : tuple
Lower prefix bound
upper : tuple
Upper prefix bound
bounds : tuple (x, y) of bools
Indicates whether the search should be inclusive or
exclusive with respect to the endpoints. The first
argument x corresponds to an inclusive lower bound,
and the second argument y to an inclusive upper bound.
'''
n = len(lower)
ncols = len(self.columns)
a = MinValue() if bounds[0] else MaxValue()
b = MaxValue() if bounds[1] else MinValue()
# [x, y] search corresponds to [(x, min), (y, max)]
# (x, y) search corresponds to ((x, max), (x, min))
lower = lower + tuple((ncols - n) * [a])
upper = upper + tuple((ncols - n) * [b])
return self.data.range(lower, upper, bounds)
def range(self, lower, upper, bounds=(True, True)):
'''
Return rows within the given range.
Parameters
----------
lower : tuple
Lower prefix bound
upper : tuple
Upper prefix bound
bounds : tuple (x, y) of bools
Indicates whether the search should be inclusive or
exclusive with respect to the endpoints. The first
argument x corresponds to an inclusive lower bound,
and the second argument y to an inclusive upper bound.
'''
return self.data.range(lower, upper, bounds)
def replace(self, row, col_name, val):
'''
Replace the value of a column at a given position.
Parameters
----------
row : int
Row number to modify
col_name : str
Name of the Column to modify
val : col.info.dtype
Value to insert at specified row of col
'''
self.remove_row(row, reorder=False)
key = [c[row] for c in self.columns]
key[self.col_position(col_name)] = val
self.data.add(tuple(key), row)
def replace_rows(self, col_slice):
'''
Modify rows in this index to agree with the specified
slice. For example, given an index
{'5': 1, '2': 0, '3': 2} on a column ['2', '5', '3'],
an input col_slice of [2, 0] will result in the relabeling
{'3': 0, '2': 1} on the sliced column ['3', '2'].
Parameters
----------
col_slice : list
Indices to slice
'''
row_map = dict((row, i) for i, row in enumerate(col_slice))
self.data.replace_rows(row_map)
def sort(self):
'''
Make row numbers follow the same sort order as the keys
of the index.
'''
self.data.sort()
def sorted_data(self):
'''
Returns a list of rows in sorted order based on keys;
essentially acts as an argsort() on columns.
'''
return self.data.sorted_data()
def __getitem__(self, item):
'''
Returns a sliced version of this index.
Parameters
----------
item : slice
Input slice
Returns
-------
SlicedIndex
A sliced reference to this index.
'''
return SlicedIndex(self, item)
def __str__(self):
return str(self.data)
def __repr__(self):
return str(self)
def __deepcopy__(self, memo):
'''
Return a deep copy of this index.
Notes
-----
The default deep copy must be overridden to perform
a shallow copy of the index columns, avoiding infinite recursion.
Parameters
----------
memo : dict
'''
num_cols = self.data.num_cols if self.engine == SortedArray else None
# create an actual Index, not a SlicedIndex
index = super(Index, Index).__new__(Index)
index.__init__(None, engine=self.engine)
index.data = deepcopy(self.data, memo)
index.columns = self.columns[:] # new list, same columns
memo[id(self)] = index
return index
class SlicedIndex(object):
'''
This class provides a wrapper around an actual Index object
to make index slicing function correctly. Since numpy expects
array slices to provide an actual data view, a SlicedIndex should
retrieve data directly from the original index and then adapt
it to the sliced coordinate system as appropriate.
Parameters
----------
index : Index
The original Index reference
index_slice : slice
The slice to which this SlicedIndex corresponds
original : bool
Whether this SlicedIndex represents the original index itself.
For the most part this is similar to index[:] but certain
copying operations are avoided, and the slice retains the
length of the actual index despite modification.
'''
def __init__(self, index, index_slice, original=False):
self.index = index
self.original = original
self._frozen = False
if isinstance(index_slice, tuple):
self.start, self._stop, self.step = index_slice
else: # index_slice is an actual slice
num_rows = len(index.columns[0])
self.start, self._stop, self.step = index_slice.indices(num_rows)
@property
def length(self):
return 1 + (self.stop - self.start - 1) // self.step
@property
def stop(self):
'''
The stopping position of the slice, or the end of the
index if this is an original slice.
'''
return len(self.index) if self.original else self._stop
def __getitem__(self, item):
'''
Returns another slice of this Index slice.
Parameters
----------
item : slice
Index slice
'''
if self.length <= 0:
# empty slice
return SlicedIndex(self.index, slice(1, 0))
start, stop, step = item.indices(self.length)
new_start = self.orig_coords(start)
new_stop = self.orig_coords(stop)
new_step = self.step * step
return SlicedIndex(self.index, (new_start, new_stop, new_step))
def sliced_coords(self, rows):
'''
Convert the input rows to the sliced coordinate system.
Parameters
----------
rows : list
Rows in the original coordinate system
Returns
-------
sliced_rows : list
Rows in the sliced coordinate system
'''
if self.original:
return rows
else:
rows = np.array(rows)
row0 = rows - self.start
if self.step != 1:
correct_mod = np.mod(row0, self.step) == 0
row0 = row0[correct_mod]
if self.step > 0:
ok = (row0 >= 0) & (row0 < self.stop - self.start)
else:
ok = (row0 <= 0) & (row0 > self.stop - self.start)
return row0[ok] // self.step
def orig_coords(self, row):
'''
Convert the input row from sliced coordinates back
to original coordinates.
Parameters
----------
row : int
Row in the sliced coordinate system
Returns
-------
orig_row : int
Row in the original coordinate system
'''
return row if self.original else self.start + row * self.step
def find(self, key):
return self.sliced_coords(self.index.find(key))
def where(self, col_map):
return self.sliced_coords(self.index.where(col_map))
def range(self, lower, upper):
return self.sliced_coords(self.index.range(lower, upper))
def same_prefix(self, key):
return self.sliced_coords(self.index.same_prefix(key))
def sorted_data(self):
return self.sliced_coords(self.index.sorted_data())
def replace(self, row, col, val):
if not self._frozen:
self.index.replace(self.orig_coords(row), col, val)
def copy(self):
if not self.original:
# replace self.index with a new object reference
self.index = deepcopy(self.index)
return self.index
def insert_row(self, pos, vals, columns):
if not self._frozen:
self.copy().insert_row(self.orig_coords(pos), vals,
columns)
def get_row_specifier(self, row_specifier):
return [self.orig_coords(x) for x in
self.index.get_row_specifier(row_specifier)]
def remove_rows(self, row_specifier):
if not self._frozen:
self.copy().remove_rows(row_specifier)
def replace_rows(self, col_slice):
if not self._frozen:
self.index.replace_rows([self.orig_coords(x) for x in col_slice])
def sort(self):
if not self._frozen:
self.copy().sort()
def __repr__(self):
if self.original:
return repr(self.index)
return 'Index slice {0} of\n{1}'.format(
(self.start, self.stop, self.step), self.index)
def __str__(self):
return repr(self)
def replace_col(self, prev_col, new_col):
self.index.replace_col(prev_col, new_col)
def reload(self):
self.index.reload()
def col_position(self, col_name):
return self.index.col_position(col_name)
def get_slice(self, col_slice, item):
'''
Return a newly created index from the given slice.
Parameters
----------
col_slice : Column object
Already existing slice of a single column
item : list or ndarray
Slice for retrieval
'''
from .table import Table
if len(self.columns) == 1:
return Index([col_slice], engine=self.data.__class__)
t = Table(self.columns, copy_indices=False)
with t.index_mode('discard_on_copy'):
new_cols = t[item].columns.values()
return Index(new_cols, engine=self.data.__class__)
@property
def columns(self):
return self.index.columns
@property
def data(self):
return self.index.data
def get_index(table, table_copy):
'''
Inputs a table and some subset of its columns, and
returns an index corresponding to this subset or None
if no such index exists.
Parameters
----------
table : `Table`
Input table
table_copy : `Table`
Subset of the columns in the table argument
'''
cols = set(table_copy.columns)
indices = set()
for column in cols:
for index in table[column].info.indices:
if set([x.info.name for x in index.columns]) == cols:
return index
return None
class _IndexModeContext(object):
'''
A context manager that allows for special indexing modes, which
are intended to improve performance. Currently the allowed modes
are "freeze", in which indices are not modified upon column modification,
"copy_on_getitem", in which indices are copied upon column slicing,
and "discard_on_copy", in which indices are discarded upon table
copying/slicing.
'''
_col_subclasses = {}
def __init__(self, table, mode):
'''
Parameters
----------
table : Table
The table to which the mode should be applied
mode : str
Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'.
In 'discard_on_copy' mode,
indices are not copied whenever columns or tables are copied.
In 'freeze' mode, indices are not modified whenever columns are
modified; at the exit of the context, indices refresh themselves
based on column values. This mode is intended for scenarios in
which one intends to make many additions or modifications on an
indexed column.
In 'copy_on_getitem' mode, indices are copied when taking column
slices as well as table slices, so col[i0:i1] will preserve
indices.
'''
self.table = table
self.mode = mode
# Used by copy_on_getitem
self._orig_classes = []
if mode not in ('freeze', 'discard_on_copy', 'copy_on_getitem'):
raise ValueError("Expected a mode of either 'freeze', "
"'discard_on_copy', or 'copy_on_getitem', got "
"'{0}'".format(mode))
def __enter__(self):
if self.mode == 'discard_on_copy':
self.table._copy_indices = False
elif self.mode == 'copy_on_getitem':
for col in self.table.columns.values():
self._orig_classes.append(col.__class__)
col.__class__ = self._get_copy_on_getitem_shim(col.__class__)
else:
for index in self.table.indices:
index._frozen = True
def __exit__(self, exc_type, exc_value, traceback):
if self.mode == 'discard_on_copy':
self.table._copy_indices = True
elif self.mode == 'copy_on_getitem':
for col in reversed(self.table.columns.values()):
col.__class__ = self._orig_classes.pop()
else:
for index in self.table.indices:
index._frozen = False
index.reload()
def _get_copy_on_getitem_shim(self, cls):
"""
This creates a subclass of the column's class which overrides that
class's ``__getitem__``, such that when returning a slice of the
column, the relevant indices are also copied over to the slice.
Ideally, rather than shimming in a new ``__class__`` we would be able
to just flip a flag that is checked by the base class's
``__getitem__``. Unfortunately, since the flag needs to be a Python
variable, this slows down ``__getitem__`` too much in the more common
case where a copy of the indices is not needed. See the docstring for
``astropy.table._column_mixins`` for more information on that.
"""
if cls in self._col_subclasses:
return self._col_subclasses[cls]
def __getitem__(self, item):
value = cls.__getitem__(self, item)
if type(value) is type(self):
value = self.info.slice_indices(value, item, len(self))
return value
clsname = '_{0}WithIndexCopy'.format(cls.__name__)
new_cls = type(str(clsname), (cls,), {'__getitem__': __getitem__})
self._col_subclasses[cls] = new_cls
return new_cls
class TableIndices(list):
'''
A special list of table indices allowing
for retrieval by column name(s).
Parameters
----------
lst : list
List of indices
'''
def __init__(self, lst):
super(TableIndices, self).__init__(lst)
def __getitem__(self, item):
'''
Retrieve an item from the list of indices.
Parameters
----------
item : int, str, tuple, or list
Position in list or name(s) of indexed column(s)
'''
if isinstance(item, six.string_types):
item = [item]
if isinstance(item, (list, tuple)):
item = list(item)
for index in self:
try:
for name in item:
index.col_position(name)
if len(index.columns) == len(item):
return index
except ValueError:
pass
# index search failed
raise IndexError("No index found for {0}".format(item))
return super(TableIndices, self).__getitem__(item)
class TableLoc(object):
'''
A pseudo-list of Table rows allowing for retrieval
of rows by indexed column values.
Parameters
----------
table : Table
Indexed table to use
'''
def __init__(self, table):
self.table = table
self.indices = table.indices
if len(self.indices) == 0:
raise ValueError("Cannot create TableLoc object with no indices")
def __getitem__(self, item):
'''
Retrieve Table rows by value slice.
Parameters
----------
item : column element, list, ndarray, slice or tuple
Can be a value of the table primary index, a list/ndarray
of such values, or a value slice (both endpoints are included).
If a tuple is provided, the first element must be
an index to use instead of the primary key, and the
second element must be as above.
'''
if isinstance(item, tuple):
key, item = item
else:
key = self.table.primary_key
index = self.indices[key]
if len(index.columns) > 1:
raise ValueError("Cannot use .loc on multi-column indices")
if isinstance(item, slice):
# None signifies no upper/lower bound
start = MinValue() if item.start is None else item.start
stop = MaxValue() if item.stop is None else item.stop
rows = index.range((start,), (stop,))
else:
if not isinstance(item, (list, np.ndarray)): # single element
item = [item]
# item should be a list or ndarray of values
rows = []
for key in item:
rows.extend(index.find((key,)))
if len(rows) == 0: # no matches found
raise KeyError('No matches found for key {0}'.format(item))
elif len(rows) == 1: # single row
return self.table[rows[0]]
return self.table[rows]
class TableILoc(TableLoc):
'''
A variant of TableLoc allowing for row retrieval by
indexed order rather than data values.
Parameters
----------
table : Table
Indexed table to use
'''
def __init__(self, table):
super(TableILoc, self).__init__(table)
def __getitem__(self, item):
if isinstance(item, tuple):
key, item = item
else:
key = self.table.primary_key
index = self.indices[key]
rows = index.sorted_data()[item]
table_slice = self.table[rows]
if len(table_slice) == 0: # no matches found
raise IndexError('Invalid index for iloc: {0}'.format(item))
return table_slice
|