File: table.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (2752 lines) | stat: -rw-r--r-- 100,549 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from ..extern import six
from ..extern.six.moves import zip, range
from .index import TableIndices, TableLoc, TableILoc

import re
import sys
from collections import OrderedDict, Mapping
import warnings
from copy import deepcopy

import numpy as np
from numpy import ma

from .. import log
from ..io import registry as io_registry
from ..units import Quantity
from ..utils import isiterable, deprecated
from ..utils.console import color_print
from ..utils.metadata import MetaData
from ..utils.data_info import BaseColumnInfo, MixinInfo, ParentDtypeInfo, DataInfo
from . import groups
from .pprint import TableFormatter
from .column import (BaseColumn, Column, MaskedColumn, _auto_names, FalseArray,
                     col_copy)
from .row import Row
from .np_utils import fix_column_name, recarray_fromrecords
from .info import TableInfo
from .index import Index, _IndexModeContext, get_index
from . import conf


__doctest_skip__ = ['Table.read', 'Table.write',
                    'Table.convert_bytestring_to_unicode',
                    'Table.convert_unicode_to_bytestring',
                    ]


class TableReplaceWarning(UserWarning):
    """
    Warning class for cases when a table column is replaced via the
    Table.__setitem__ syntax e.g. t['a'] = val.

    This does not inherit from AstropyWarning because we want to use
    stacklevel=3 to show the user where the issue occurred in their code.
    """
    pass


def descr(col):

    """Array-interface compliant full description of a column.

    This returns a 3-tuple (name, type, shape) that can always be
    used in a structured array dtype definition.
    """
    col_dtype = 'O' if (col.info.dtype is None) else col.info.dtype
    col_shape = col.shape[1:] if hasattr(col, 'shape') else ()
    return (col.info.name, col_dtype, col_shape)


def has_info_class(obj, cls):
    return hasattr(obj, 'info') and isinstance(obj.info, cls)


class TableColumns(OrderedDict):
    """OrderedDict subclass for a set of columns.

    This class enhances item access to provide convenient access to columns
    by name or index, including slice access.  It also handles renaming
    of columns.

    The initialization argument ``cols`` can be a list of ``Column`` objects
    or any structure that is valid for initializing a Python dict.  This
    includes a dict, list of (key, val) tuples or [key, val] lists, etc.

    Parameters
    ----------
    cols : dict, list, tuple; optional
        Column objects as data structure that can init dict (see above)
    """

    def __init__(self, cols={}):
        if isinstance(cols, (list, tuple)):
            # `cols` should be a list of two-tuples, but it is allowed to have
            # columns (BaseColumn or mixins) in the list.
            newcols = []
            for col in cols:
                if has_info_class(col, BaseColumnInfo):
                    newcols.append((col.info.name, col))
                else:
                    newcols.append(col)
            cols = newcols
        super(TableColumns, self).__init__(cols)

    def __getitem__(self, item):
        """Get items from a TableColumns object.
        ::

          tc = TableColumns(cols=[Column(name='a'), Column(name='b'), Column(name='c')])
          tc['a']  # Column('a')
          tc[1] # Column('b')
          tc['a', 'b'] # <TableColumns names=('a', 'b')>
          tc[1:3] # <TableColumns names=('b', 'c')>
        """
        if isinstance(item, six.string_types):
            return OrderedDict.__getitem__(self, item)
        elif isinstance(item, (int, np.integer)):
            return self.values()[item]
        elif isinstance(item, tuple):
            return self.__class__([self[x] for x in item])
        elif isinstance(item, slice):
            return self.__class__([self[x] for x in list(self)[item]])
        else:
            raise IndexError('Illegal key or index value for {} object'
                             .format(self.__class__.__name__))

    def __setitem__(self, item, value):
        if item in self:
            raise ValueError("Cannot replace column '{0}'.  Use Table.replace_column() instead."
                             .format(item))
        super(TableColumns, self).__setitem__(item, value)

    def __repr__(self):
        names = ("'{0}'".format(x) for x in six.iterkeys(self))
        return "<{1} names=({0})>".format(",".join(names), self.__class__.__name__)

    def _rename_column(self, name, new_name):
        if name == new_name:
            return

        if new_name in self:
            raise KeyError("Column {0} already exists".format(new_name))

        mapper = {name: new_name}
        new_names = [mapper.get(name, name) for name in self]
        cols = list(six.itervalues(self))
        self.clear()
        self.update(list(zip(new_names, cols)))

    # Define keys and values for Python 2 and 3 source compatibility
    def keys(self):
        return list(OrderedDict.keys(self))

    def values(self):
        return list(OrderedDict.values(self))


class Table(object):
    """A class to represent tables of heterogeneous data.

    `Table` provides a class for heterogeneous tabular data, making use of a
    `numpy` structured array internally to store the data values.  A key
    enhancement provided by the `Table` class is the ability to easily modify
    the structure of the table by adding or removing columns, or adding new
    rows of data.  In addition table and column metadata are fully supported.

    `Table` differs from `~astropy.nddata.NDData` by the assumption that the
    input data consists of columns of homogeneous data, where each column
    has a unique identifier and may contain additional metadata such as the
    data unit, format, and description.

    Parameters
    ----------
    data : numpy ndarray, dict, list, Table, or table-like object, optional
        Data to initialize table.
    masked : bool, optional
        Specify whether the table is masked.
    names : list, optional
        Specify column names
    dtype : list, optional
        Specify column data types
    meta : dict, optional
        Metadata associated with the table.
    copy : bool, optional
        Copy the input data (default=True).
    rows : numpy ndarray, list of lists, optional
        Row-oriented data for table instead of ``data`` argument
    copy_indices : bool, optional
        Copy any indices in the input data (default=True)
    **kwargs : dict, optional
        Additional keyword args when converting table-like object

    .. note::
        If the input is a Table the ``meta`` is always copied regardless of the
        ``copy`` parameter.
    """

    meta = MetaData()

    # Define class attributes for core container objects to allow for subclass
    # customization.
    Row = Row
    Column = Column
    MaskedColumn = MaskedColumn
    TableColumns = TableColumns
    TableFormatter = TableFormatter

    @property
    @deprecated('0.4', alternative=':attr:`Table.as_array`')
    def _data(self):
        """
        Return a new copy of the table in the form of a structured np.ndarray or
        np.ma.MaskedArray object (as appropriate).

        Prior to version 1.0 of astropy this private property was a modifiable
        view of the table data, but since 1.0 it is a copy.
        """
        return self.as_array()

    def as_array(self, keep_byteorder=False):
        """
        Return a new copy of the table in the form of a structured np.ndarray or
        np.ma.MaskedArray object (as appropriate).

        Parameters
        ----------
        keep_byteorder : bool, optional
            By default the returned array has all columns in native byte
            order.  However, if this option is `True` this preserves the
            byte order of all columns (if any are non-native).

        Returns
        -------
        table_array : np.ndarray (unmasked) or np.ma.MaskedArray (masked)
            Copy of table as a numpy structured array
        """
        if len(self.columns) == 0:
            return None

        sys_byteorder = ('>', '<')[sys.byteorder == 'little']
        native_order = ('=', sys_byteorder)

        dtype = []

        cols = self.columns.values()

        for col in cols:
            col_descr = descr(col)
            byteorder = col.info.dtype.byteorder

            if not keep_byteorder and byteorder not in native_order:
                new_dt = np.dtype(col_descr[1]).newbyteorder('=')
                col_descr = (col_descr[0], new_dt, col_descr[2])

            dtype.append(col_descr)

        empty_init = ma.empty if self.masked else np.empty
        data = empty_init(len(self), dtype=dtype)
        for col in cols:
            # When assigning from one array into a field of a structured array,
            # Numpy will automatically swap those columns to their destination
            # byte order where applicable
            data[col.info.name] = col

        return data

    def __init__(self, data=None, masked=None, names=None, dtype=None,
                 meta=None, copy=True, rows=None, copy_indices=True,
                 **kwargs):

        # Set up a placeholder empty table
        self._set_masked(masked)
        self.columns = self.TableColumns()
        self.meta = meta
        self.formatter = self.TableFormatter()
        self._copy_indices = True # copy indices from this Table by default
        self._init_indices = copy_indices # whether to copy indices in init
        self.primary_key = None

        # Must copy if dtype are changing
        if not copy and dtype is not None:
            raise ValueError('Cannot specify dtype when copy=False')

        # Row-oriented input, e.g. list of lists or list of tuples, list of
        # dict, Row instance.  Set data to something that the subsequent code
        # will parse correctly.
        is_list_of_dict = False
        if rows is not None:
            if data is not None:
                raise ValueError('Cannot supply both `data` and `rows` values')
            if all(isinstance(row, dict) for row in rows):
                is_list_of_dict = True  # Avoid doing the all(...) test twice.
                data = rows
            elif isinstance(rows, self.Row):
                data = rows
            else:
                rec_data = recarray_fromrecords(rows)
                data = [rec_data[name] for name in rec_data.dtype.names]

        # Infer the type of the input data and set up the initialization
        # function, number of columns, and potentially the default col names

        default_names = None

        if hasattr(data, '__astropy_table__'):
            # Data object implements the __astropy_table__ interface method.
            # Calling that method returns an appropriate instance of
            # self.__class__ and respects the `copy` arg.  The returned
            # Table object should NOT then be copied (though the meta
            # will be deep-copied anyway).
            data = data.__astropy_table__(self.__class__, copy, **kwargs)
            copy = False
        elif kwargs:
            raise TypeError('__init__() got unexpected keyword argument {!r}'
                            .format(list(kwargs.keys())[0]))

        if (isinstance(data, np.ndarray) and
                data.shape == (0,) and
                not data.dtype.names):
            data = None

        if isinstance(data, self.Row):
            data = data._table[data._index:data._index + 1]

        if isinstance(data, (list, tuple)):
            init_func = self._init_from_list
            if data and (is_list_of_dict or all(isinstance(row, dict) for row in data)):
                n_cols = len(data[0])
            else:
                n_cols = len(data)

        elif isinstance(data, np.ndarray):
            if data.dtype.names:
                init_func = self._init_from_ndarray  # _struct
                n_cols = len(data.dtype.names)
                default_names = data.dtype.names
            else:
                init_func = self._init_from_ndarray  # _homog
                if data.shape == ():
                    raise ValueError('Can not initialize a Table with a scalar')
                elif len(data.shape) == 1:
                    data = data[np.newaxis, :]
                n_cols = data.shape[1]

        elif isinstance(data, Mapping):
            init_func = self._init_from_dict
            default_names = list(data)
            n_cols = len(default_names)

        elif isinstance(data, Table):
            init_func = self._init_from_table
            n_cols = len(data.colnames)
            default_names = data.colnames
            # don't copy indices if the input Table is in non-copy mode
            self._init_indices = self._init_indices and data._copy_indices

        elif data is None:
            if names is None:
                if dtype is None:
                    return  # Empty table
                try:
                    # No data nor names but dtype is available.  This must be
                    # valid to initialize a structured array.
                    dtype = np.dtype(dtype)
                    names = dtype.names
                    dtype = [dtype[name] for name in names]
                except Exception:
                    raise ValueError('dtype was specified but could not be '
                                     'parsed for column names')
            # names is guaranteed to be set at this point
            init_func = self._init_from_list
            n_cols = len(names)
            data = [[]] * n_cols

        else:
            raise ValueError('Data type {0} not allowed to init Table'
                             .format(type(data)))

        # Set up defaults if names and/or dtype are not specified.
        # A value of None means the actual value will be inferred
        # within the appropriate initialization routine, either from
        # existing specification or auto-generated.

        if names is None:
            names = default_names or [None] * n_cols
        if dtype is None:
            dtype = [None] * n_cols

        # Numpy does not support Unicode column names on Python 2, or
        # bytes column names on Python 3, so fix them up now.
        names = [fix_column_name(name) for name in names]

        self._check_names_dtype(names, dtype, n_cols)

        # Finally do the real initialization
        init_func(data, names, dtype, n_cols, copy)

        # Whatever happens above, the masked property should be set to a boolean
        if type(self.masked) is not bool:
            raise TypeError("masked property has not been set to True or False")

    def __getstate__(self):
        columns = OrderedDict((key, col if isinstance(col, BaseColumn) else col_copy(col))
                              for key, col in self.columns.items())
        return (columns, self.meta)

    def __setstate__(self, state):
        columns, meta = state
        self.__init__(columns, meta=meta)

    @property
    def mask(self):
        # Dynamic view of available masks
        if self.masked:
            mask_table = Table([col.mask for col in self.columns.values()],
                               names=self.colnames, copy=False)

            # Set hidden attribute to force inplace setitem so that code like
            # t.mask['a'] = [1, 0, 1] will correctly set the underlying mask.
            # See #5556 for discussion.
            mask_table._setitem_inplace = True
        else:
            mask_table = None

        return mask_table

    @mask.setter
    def mask(self, val):
        self.mask[:] = val

    @property
    def _mask(self):
        """This is needed so that comparison of a masked Table and a
        MaskedArray works.  The requirement comes from numpy.ma.core
        so don't remove this property."""
        return self.as_array().mask

    def filled(self, fill_value=None):
        """Return a copy of self, with masked values filled.

        If input ``fill_value`` supplied then that value is used for all
        masked entries in the table.  Otherwise the individual
        ``fill_value`` defined for each table column is used.

        Parameters
        ----------
        fill_value : str
            If supplied, this ``fill_value`` is used for all masked entries
            in the entire table.

        Returns
        -------
        filled_table : Table
            New table with masked values filled
        """
        if self.masked:
            data = [col.filled(fill_value) for col in six.itervalues(self.columns)]
        else:
            data = self
        return self.__class__(data, meta=deepcopy(self.meta))

    @property
    def indices(self):
        '''
        Return the indices associated with columns of the table
        as a TableIndices object.
        '''
        lst = []
        for column in self.columns.values():
            for index in column.info.indices:
                if sum([index is x for x in lst]) == 0: # ensure uniqueness
                    lst.append(index)
        return TableIndices(lst)

    @property
    def loc(self):
        '''
        Return a TableLoc object that can be used for retrieving
        rows by index in a given data range. Note that both loc
        and iloc work only with single-column indices.
        '''
        return TableLoc(self)

    @property
    def iloc(self):
        '''
        Return a TableILoc object that can be used for retrieving
        indexed rows in the order they appear in the index.
        '''
        return TableILoc(self)

    def add_index(self, colnames, engine=None, unique=False):
        '''
        Insert a new index among one or more columns.
        If there are no indices, make this index the
        primary table index.

        Parameters
        ----------
        colnames : str or list
            List of column names (or a single column name) to index
        engine : type or None
            Indexing engine class to use, from among SortedArray, BST,
            FastBST, and FastRBT. If the supplied argument is None (by
            default), use SortedArray.
        unique : bool (defaults to False)
            Whether the values of the index must be unique
        '''
        if isinstance(colnames, six.string_types):
            colnames = (colnames,)
        columns = self.columns[tuple(colnames)].values()

        # make sure all columns support indexing
        for col in columns:
            if not getattr(col.info, '_supports_indexing', False):
                raise ValueError('Cannot create an index on column "{0}", of '
                                 'type "{1}"'.format(col.info.name, type(col)))

        index = Index(columns, engine=engine, unique=unique)
        if not self.indices:
            self.primary_key = colnames
        for col in columns:
            col.info.indices.append(index)

    def remove_indices(self, colname):
        '''
        Remove all indices involving the given column.
        If the primary index is removed, the new primary
        index will be the most recently added remaining
        index.

        Parameters
        ----------
        colname : str
            Name of column
        '''
        col = self.columns[colname]
        for index in self.indices:
            try:
                index.col_position(col.info.name)
            except ValueError:
                pass
            else:
                for c in index.columns:
                    c.info.indices.remove(index)

    def index_mode(self, mode):
        '''
        Return a context manager for an indexing mode.

        Parameters
        ----------
        mode : str
            Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'.
            In 'discard_on_copy' mode,
            indices are not copied whenever columns or tables are copied.
            In 'freeze' mode, indices are not modified whenever columns are
            modified; at the exit of the context, indices refresh themselves
            based on column values. This mode is intended for scenarios in
            which one intends to make many additions or modifications in an
            indexed column.
            In 'copy_on_getitem' mode, indices are copied when taking column
            slices as well as table slices, so col[i0:i1] will preserve
            indices.
        '''
        return _IndexModeContext(self, mode)

    def __array__(self, dtype=None):
        """Support converting Table to np.array via np.array(table).

        Coercion to a different dtype via np.array(table, dtype) is not
        supported and will raise a ValueError.
        """
        if dtype is not None:
            raise ValueError('Datatype coercion is not allowed')

        # This limitation is because of the following unexpected result that
        # should have made a table copy while changing the column names.
        #
        # >>> d = astropy.table.Table([[1,2],[3,4]])
        # >>> np.array(d, dtype=[('a', 'i8'), ('b', 'i8')])
        # array([(0, 0), (0, 0)],
        #       dtype=[('a', '<i8'), ('b', '<i8')])

        return self.as_array().data if self.masked else self.as_array()

    def _check_names_dtype(self, names, dtype, n_cols):
        """Make sure that names and dtype are both iterable and have
        the same length as data.
        """
        for inp_list, inp_str in ((dtype, 'dtype'), (names, 'names')):
            if not isiterable(inp_list):
                raise ValueError('{0} must be a list or None'.format(inp_str))

        if len(names) != n_cols or len(dtype) != n_cols:
            raise ValueError(
                'Arguments "names" and "dtype" must match number of columns'
                .format(inp_str))

    def _set_masked_from_cols(self, cols):
        if self.masked is None:
            if any(isinstance(col, (MaskedColumn, ma.MaskedArray)) for col in cols):
                self._set_masked(True)
            else:
                self._set_masked(False)
        elif not self.masked:
            if any(np.any(col.mask) for col in cols if isinstance(col, (MaskedColumn, ma.MaskedArray))):
                self._set_masked(True)

    def _init_from_list_of_dicts(self, data, names, dtype, n_cols, copy):
        names_from_data = set()
        for row in data:
            names_from_data.update(row)

        cols = {}
        for name in names_from_data:
            cols[name] = []
            for i, row in enumerate(data):
                try:
                    cols[name].append(row[name])
                except KeyError:
                    raise ValueError('Row {0} has no value for column {1}'.format(i, name))
        if all(name is None for name in names):
            names = sorted(names_from_data)
        self._init_from_dict(cols, names, dtype, n_cols, copy)
        return

    def _init_from_list(self, data, names, dtype, n_cols, copy):
        """Initialize table from a list of columns.  A column can be a
        Column object, np.ndarray, mixin, or any other iterable object.
        """
        if data and all(isinstance(row, dict) for row in data):
            self._init_from_list_of_dicts(data, names, dtype, n_cols, copy)
            return

        # Set self.masked appropriately, then get class to create column instances.
        self._set_masked_from_cols(data)

        cols = []
        def_names = _auto_names(n_cols)

        for col, name, def_name, dtype in zip(data, names, def_names, dtype):
            # Structured ndarray gets viewed as a mixin
            if isinstance(col, np.ndarray) and len(col.dtype) > 1:
                col = col.view(NdarrayMixin)

            if isinstance(col, (Column, MaskedColumn)):
                col = self.ColumnClass(name=(name or col.info.name or def_name),
                                       data=col, dtype=dtype,
                                       copy=copy, copy_indices=self._init_indices)
            elif self._add_as_mixin_column(col):
                # Copy the mixin column attributes if they exist since the copy below
                # may not get this attribute.
                if copy:
                    col = col_copy(col, copy_indices=self._init_indices)

                col.info.name = name or col.info.name or def_name
            elif isinstance(col, np.ndarray) or isiterable(col):
                col = self.ColumnClass(name=(name or def_name), data=col, dtype=dtype,
                                       copy=copy, copy_indices=self._init_indices)
            else:
                raise ValueError('Elements in list initialization must be '
                                 'either Column or list-like')

            cols.append(col)

        self._init_from_cols(cols)

    def _init_from_ndarray(self, data, names, dtype, n_cols, copy):
        """Initialize table from an ndarray structured array"""

        data_names = data.dtype.names or _auto_names(n_cols)
        struct = data.dtype.names is not None
        names = [name or data_names[i] for i, name in enumerate(names)]

        cols = ([data[name] for name in data_names] if struct else
                [data[:, i] for i in range(n_cols)])

        # Set self.masked appropriately, then get class to create column instances.
        self._set_masked_from_cols(cols)

        if copy:
            self._init_from_list(cols, names, dtype, n_cols, copy)
        else:
            dtype = [(name, col.dtype, col.shape[1:]) for name, col in zip(names, cols)]
            newdata = data.view(dtype).ravel()
            columns = self.TableColumns()

            for name in names:
                columns[name] = self.ColumnClass(name=name, data=newdata[name])
                columns[name].info.parent_table = self
            self.columns = columns

    def _init_from_dict(self, data, names, dtype, n_cols, copy):
        """Initialize table from a dictionary of columns"""

        # TODO: is this restriction still needed with no ndarray?
        if not copy:
            raise ValueError('Cannot use copy=False with a dict data input')

        data_list = [data[name] for name in names]
        self._init_from_list(data_list, names, dtype, n_cols, copy)

    def _init_from_table(self, data, names, dtype, n_cols, copy):
        """Initialize table from an existing Table object """

        table = data  # data is really a Table, rename for clarity
        self.meta.clear()
        self.meta.update(deepcopy(table.meta))
        self.primary_key = table.primary_key
        cols = list(table.columns.values())

        self._init_from_list(cols, names, dtype, n_cols, copy)

    def _convert_col_for_table(self, col):
        """
        Make sure that all Column objects have correct class for this type of
        Table.  For a base Table this most commonly means setting to
        MaskedColumn if the table is masked.  Table subclasses like QTable
        override this method.
        """
        if col.__class__ is not self.ColumnClass and isinstance(col, Column):
            col = self.ColumnClass(col)  # copy attributes and reference data
        return col

    def _init_from_cols(self, cols):
        """Initialize table from a list of Column or mixin objects"""

        lengths = set(len(col) for col in cols)
        if len(lengths) != 1:
            raise ValueError('Inconsistent data column lengths: {0}'
                             .format(lengths))

        # Set the table masking
        self._set_masked_from_cols(cols)

        # Make sure that all Column-based objects have correct class.  For
        # plain Table this is self.ColumnClass, but for instance QTable will
        # convert columns with units to a Quantity mixin.
        newcols = [self._convert_col_for_table(col) for col in cols]
        self._make_table_from_cols(self, newcols)

        # Deduplicate indices.  It may happen that after pickling or when
        # initing from an existing table that column indices which had been
        # references to a single index object got *copied* into an independent
        # object.  This results in duplicates which will cause downstream problems.
        index_dict = {}
        for col in self.itercols():
            for i, index in enumerate(col.info.indices or []):
                names = tuple(ind_col.info.name for ind_col in index.columns)
                if names in index_dict:
                    col.info.indices[i] = index_dict[names]
                else:
                    index_dict[names] = index

    def _new_from_slice(self, slice_):
        """Create a new table as a referenced slice from self."""

        table = self.__class__(masked=self.masked)
        table.meta.clear()
        table.meta.update(deepcopy(self.meta))
        table.primary_key = self.primary_key
        cols = self.columns.values()

        newcols = []
        for col in cols:
            col.info._copy_indices = self._copy_indices
            newcol = col[slice_]
            if col.info.indices:
                newcol = col.info.slice_indices(newcol, slice_, len(col))
            newcols.append(newcol)
            col.info._copy_indices = True

        self._make_table_from_cols(table, newcols)
        return table

    @staticmethod
    def _make_table_from_cols(table, cols):
        """
        Make ``table`` in-place so that it represents the given list of ``cols``.
        """
        colnames = set(col.info.name for col in cols)
        if None in colnames:
            raise TypeError('Cannot have None for column name')
        if len(colnames) != len(cols):
            raise ValueError('Duplicate column names')

        columns = table.TableColumns((col.info.name, col) for col in cols)

        for col in cols:
            col.info.parent_table = table
            if table.masked and not hasattr(col, 'mask'):
                col.mask = FalseArray(col.shape)

        table.columns = columns

    def itercols(self):
        """
        Iterate over the columns of this table.

        Examples
        --------

        To iterate over the columns of a table::

            >>> t = Table([[1], [2]])
            >>> for col in t.itercols():
            ...     print(col)
            col0
            ----
               1
            col1
            ----
               2

        Using ``itercols()`` is similar to  ``for col in t.columns.values()``
        but is syntactically preferred.
        """
        for colname in self.columns:
            yield self[colname]

    def _base_repr_(self, html=False, descr_vals=None, max_width=None,
                    tableid=None, show_dtype=True, max_lines=None,
                    tableclass=None):
        if descr_vals is None:
            descr_vals = [self.__class__.__name__]
            if self.masked:
                descr_vals.append('masked=True')
            descr_vals.append('length={0}'.format(len(self)))

        descr = '<' + ' '.join(descr_vals) + '>\n'

        if html:
            from ..utils.xml.writer import xml_escape
            descr = xml_escape(descr)

        if tableid is None:
            tableid = 'table{id}'.format(id=id(self))

        data_lines, outs = self.formatter._pformat_table(
            self, tableid=tableid, html=html, max_width=max_width,
            show_name=True, show_unit=None, show_dtype=show_dtype,
            max_lines=max_lines, tableclass=tableclass)

        out = descr + '\n'.join(data_lines)
        if six.PY2 and isinstance(out, six.text_type):
            out = out.encode('utf-8')

        return out

    def _repr_html_(self):
        return self._base_repr_(html=True, max_width=-1,
                                tableclass=conf.default_notebook_table_class)

    def __repr__(self):
        return self._base_repr_(html=False, max_width=None)

    def __unicode__(self):
        return '\n'.join(self.pformat())
    if not six.PY2:
        __str__ = __unicode__

    def __bytes__(self):
        return six.text_type(self).encode('utf-8')
    if six.PY2:
        __str__ = __bytes__

    @property
    def has_mixin_columns(self):
        """
        True if table has any mixin columns (defined as columns that are not Column
        subclasses)
        """
        return any(has_info_class(col, MixinInfo) for col in self.columns.values())

    def _add_as_mixin_column(self, col):
        """
        Determine if ``col`` should be added to the table directly as
        a mixin column.
        """
        if isinstance(col, BaseColumn):
            return False

        # Is it a mixin but not not Quantity (which gets converted to Column with
        # unit set).
        return has_info_class(col, MixinInfo) and not isinstance(col, Quantity)

    def pprint(self, max_lines=None, max_width=None, show_name=True,
               show_unit=None, show_dtype=False, align=None):
        """Print a formatted string representation of the table.

        If no value of ``max_lines`` is supplied then the height of the
        screen terminal is used to set ``max_lines``.  If the terminal
        height cannot be determined then the default is taken from the
        configuration item ``astropy.conf.max_lines``.  If a negative
        value of ``max_lines`` is supplied then there is no line limit
        applied.

        The same applies for max_width except the configuration item is
        ``astropy.conf.max_width``.

        Parameters
        ----------
        max_lines : int
            Maximum number of lines in table output

        max_width : int or `None`
            Maximum character width of output

        show_name : bool
            Include a header row for column names (default=True)

        show_unit : bool
            Include a header row for unit.  Default is to show a row
            for units only if one or more columns has a defined value
            for the unit.

        show_dtype : bool
            Include a header row for column dtypes (default=True)

        align : str or list or tuple or `None`
            Left/right alignment of columns. Default is right (None) for all
            columns. Other allowed values are '>', '<', '^', and '0=' for
            right, left, centered, and 0-padded, respectively. A list of
            strings can be provided for alignment of tables with multiple
            columns.
        """
        lines, outs = self.formatter._pformat_table(self, max_lines, max_width,
                                                    show_name=show_name, show_unit=show_unit,
                                                    show_dtype=show_dtype, align=align)
        if outs['show_length']:
            lines.append('Length = {0} rows'.format(len(self)))

        n_header = outs['n_header']

        for i, line in enumerate(lines):
            if i < n_header:
                color_print(line, 'red')
            else:
                print(line)

    def _make_index_row_display_table(self, index_row_name):
        if index_row_name not in self.columns:
            idx_col = self.ColumnClass(name=index_row_name, data=np.arange(len(self)))
            return self.__class__([idx_col] + self.columns.values(),
                                           copy=False)
        else:
            return self

    def show_in_notebook(self, tableid=None, css=None, display_length=50,
                         table_class='astropy-default', show_row_index='idx'):
        """Render the table in HTML and show it in the IPython notebook.

        Parameters
        ----------
        tableid : str or `None`
            An html ID tag for the table.  Default is ``table{id}-XXX``, where
            id is the unique integer id of the table object, id(self), and XXX
            is a random number to avoid conflicts when printing the same table
            multiple times.
        table_class : str or `None`
            A string with a list of HTML classes used to style the table.
            The special default string ('astropy-default') means that the string
            will be retrieved from the configuration item
            ``astropy.table.default_notebook_table_class``. Note that these
            table classes may make use of bootstrap, as this is loaded with the
            notebook.  See `this page <http://getbootstrap.com/css/#tables>`_
            for the list of classes.
        css : string
            A valid CSS string declaring the formatting for the table. Default
            to ``astropy.table.jsviewer.DEFAULT_CSS_NB``.
        display_length : int, optional
            Number or rows to show. Defaults to 50.
        show_row_index : str or False
            If this does not evaluate to False, a column with the given name
            will be added to the version of the table that gets displayed.
            This new column shows the index of the row in the table itself,
            even when the displayed table is re-sorted by another column. Note
            that if a column with this name already exists, this option will be
            ignored. Defaults to "idx".

        Notes
        -----
        Currently, unlike `show_in_browser` (with ``jsviewer=True``), this
        method needs to access online javascript code repositories.  This is due
        to modern browsers' limitations on accessing local files.  Hence, if you
        call this method while offline (and don't have a cached version of
        jquery and jquery.dataTables), you will not get the jsviewer features.
        """

        from .jsviewer import JSViewer
        from IPython.display import HTML

        if tableid is None:
            tableid = 'table{0}-{1}'.format(id(self),
                                            np.random.randint(1, 1e6))

        jsv = JSViewer(display_length=display_length)
        if show_row_index:
            display_table = self._make_index_row_display_table(show_row_index)
        else:
            display_table = self
        if table_class == 'astropy-default':
            table_class = conf.default_notebook_table_class
        html = display_table._base_repr_(html=True, max_width=-1, tableid=tableid,
                                         max_lines=-1, show_dtype=False,
                                         tableclass=table_class)

        html += jsv.ipynb(tableid, css=css)
        return HTML(html)

    def show_in_browser(self, max_lines=5000, jsviewer=False,
                        browser='default', jskwargs={'use_local_files': True},
                        tableid=None, table_class="display compact",
                        css=None, show_row_index='idx'):

        """Render the table in HTML and show it in a web browser.

        Parameters
        ----------
        max_lines : int
            Maximum number of rows to export to the table (set low by default
            to avoid memory issues, since the browser view requires duplicating
            the table in memory).  A negative value of ``max_lines`` indicates
            no row limit.
        jsviewer : bool
            If `True`, prepends some javascript headers so that the table is
            rendered as a `DataTables <https://datatables.net>`_ data table.
            This allows in-browser searching & sorting.
        browser : str
            Any legal browser name, e.g. ``'firefox'``, ``'chrome'``,
            ``'safari'`` (for mac, you may need to use ``'open -a
            "/Applications/Google Chrome.app" {}'`` for Chrome).  If
            ``'default'``, will use the system default browser.
        jskwargs : dict
            Passed to the `astropy.table.JSViewer` init. Defaults to
            ``{'use_local_files': True}`` which means that the JavaScript
            libraries will be served from local copies.
        tableid : str or `None`
            An html ID tag for the table.  Default is ``table{id}``, where id
            is the unique integer id of the table object, id(self).
        table_class : str or `None`
            A string with a list of HTML classes used to style the table.
            Default is "display compact", and other possible values can be
            found in http://www.datatables.net/manual/styling/classes
        css : string
            A valid CSS string declaring the formatting for the table. Defaults
            to ``astropy.table.jsviewer.DEFAULT_CSS``.
        show_row_index : str or False
            If this does not evaluate to False, a column with the given name
            will be added to the version of the table that gets displayed.
            This new column shows the index of the row in the table itself,
            even when the displayed table is re-sorted by another column. Note
            that if a column with this name already exists, this option will be
            ignored. Defaults to "idx".
        """

        import os
        import webbrowser
        import tempfile
        from ..extern.six.moves.urllib.parse import urljoin
        from ..extern.six.moves.urllib.request import pathname2url
        from .jsviewer import DEFAULT_CSS

        if css is None:
            css = DEFAULT_CSS

        # We can't use NamedTemporaryFile here because it gets deleted as
        # soon as it gets garbage collected.
        tmpdir = tempfile.mkdtemp()
        path = os.path.join(tmpdir, 'table.html')

        with open(path, 'w') as tmp:
            if jsviewer:
                if show_row_index:
                    display_table = self._make_index_row_display_table(show_row_index)
                else:
                    display_table = self
                display_table.write(tmp, format='jsviewer', css=css,
                                    max_lines=max_lines, jskwargs=jskwargs,
                                    table_id=tableid, table_class=table_class)
            else:
                self.write(tmp, format='html')

        try:
            br = webbrowser.get(None if browser == 'default' else browser)
        except webbrowser.Error:
            log.error("Browser '{}' not found.".format(browser))
        else:
            br.open(urljoin('file:', pathname2url(path)))

    def pformat(self, max_lines=None, max_width=None, show_name=True,
                show_unit=None, show_dtype=False, html=False, tableid=None,
                align=None, tableclass=None):
        """Return a list of lines for the formatted string representation of
        the table.

        If no value of ``max_lines`` is supplied then the height of the
        screen terminal is used to set ``max_lines``.  If the terminal
        height cannot be determined then the default is taken from the
        configuration item ``astropy.conf.max_lines``.  If a negative
        value of ``max_lines`` is supplied then there is no line limit
        applied.

        The same applies for ``max_width`` except the configuration item  is
        ``astropy.conf.max_width``.

        Parameters
        ----------
        max_lines : int or `None`
            Maximum number of rows to output

        max_width : int or `None`
            Maximum character width of output

        show_name : bool
            Include a header row for column names (default=True)

        show_unit : bool
            Include a header row for unit.  Default is to show a row
            for units only if one or more columns has a defined value
            for the unit.

        show_dtype : bool
            Include a header row for column dtypes (default=True)

        html : bool
            Format the output as an HTML table (default=False)

        tableid : str or `None`
            An ID tag for the table; only used if html is set.  Default is
            "table{id}", where id is the unique integer id of the table object,
            id(self)

        align : str or list or tuple or `None`
            Left/right alignment of columns. Default is right (None) for all
            columns. Other allowed values are '>', '<', '^', and '0=' for
            right, left, centered, and 0-padded, respectively. A list of
            strings can be provided for alignment of tables with multiple
            columns.

        tableclass : str or list of str or `None`
            CSS classes for the table; only used if html is set.  Default is
            none

        Returns
        -------
        lines : list
            Formatted table as a list of strings

        """

        lines, outs = self.formatter._pformat_table(
            self, max_lines, max_width, show_name=show_name,
            show_unit=show_unit, show_dtype=show_dtype, html=html,
            tableid=tableid, tableclass=tableclass, align=align)

        if outs['show_length']:
            lines.append('Length = {0} rows'.format(len(self)))

        return lines

    def more(self, max_lines=None, max_width=None, show_name=True,
             show_unit=None, show_dtype=False):
        """Interactively browse table with a paging interface.

        Supported keys::

          f, <space> : forward one page
          b : back one page
          r : refresh same page
          n : next row
          p : previous row
          < : go to beginning
          > : go to end
          q : quit browsing
          h : print this help

        Parameters
        ----------
        max_lines : int
            Maximum number of lines in table output

        max_width : int or `None`
            Maximum character width of output

        show_name : bool
            Include a header row for column names (default=True)

        show_unit : bool
            Include a header row for unit.  Default is to show a row
            for units only if one or more columns has a defined value
            for the unit.

        show_dtype : bool
            Include a header row for column dtypes (default=True)
        """
        self.formatter._more_tabcol(self, max_lines, max_width, show_name=show_name,
                                    show_unit=show_unit, show_dtype=show_dtype)

    def __getitem__(self, item):
        if isinstance(item, six.string_types):
            return self.columns[item]
        elif isinstance(item, (int, np.integer)):
            return self.Row(self, item)
        elif (isinstance(item, (tuple, list)) and item and
              all(isinstance(x, six.string_types) for x in item)):
            bad_names = [x for x in item if x not in self.colnames]
            if bad_names:
                raise ValueError('Slice name(s) {0} not valid column name(s)'
                                 .format(', '.join(bad_names)))
            out = self.__class__([self[x] for x in item],
                                 meta=deepcopy(self.meta),
                                 copy_indices=self._copy_indices)
            out._groups = groups.TableGroups(out, indices=self.groups._indices,
                                             keys=self.groups._keys)
            return out
        elif ((isinstance(item, np.ndarray) and len(item) == 0) or
              (isinstance(item, (tuple, list)) and not item)):
            # If item is an empty array/list/tuple then return the table with no rows
            return self._new_from_slice([])
        elif (isinstance(item, slice) or
              isinstance(item, np.ndarray) or
              isinstance(item, list) or
              isinstance(item, tuple) and all(isinstance(x, np.ndarray)
                                              for x in item)):
            # here for the many ways to give a slice; a tuple of ndarray
            # is produced by np.where, as in t[np.where(t['a'] > 2)]
            # For all, a new table is constructed with slice of all columns
            return self._new_from_slice(item)
        else:
            raise ValueError('Illegal type {0} for table item access'
                             .format(type(item)))

    def __setitem__(self, item, value):
        # If the item is a string then it must be the name of a column.
        # If that column doesn't already exist then create it now.
        if isinstance(item, six.string_types) and item not in self.colnames:
            NewColumn = self.MaskedColumn if self.masked else self.Column
            # If value doesn't have a dtype and won't be added as a mixin then
            # convert to a numpy array.
            if not hasattr(value, 'dtype') and not self._add_as_mixin_column(value):
                value = np.asarray(value)

            # Structured ndarray gets viewed as a mixin
            if isinstance(value, np.ndarray) and len(value.dtype) > 1:
                value = value.view(NdarrayMixin)

            # Make new column and assign the value.  If the table currently
            # has no rows (len=0) of the value is already a Column then
            # define new column directly from value.  In the latter case
            # this allows for propagation of Column metadata.  Otherwise
            # define a new column with the right length and shape and then
            # set it from value.  This allows for broadcasting, e.g. t['a']
            # = 1.
            name = item
            # If this is a column-like object that could be added directly to table
            if isinstance(value, BaseColumn) or self._add_as_mixin_column(value):
                new_column = col_copy(value)
                new_column.info.name = name
            elif len(self) == 0:
                new_column = NewColumn(value, name=name)
            else:
                new_column = NewColumn(name=name, length=len(self), dtype=value.dtype,
                                       shape=value.shape[1:])
                new_column[:] = value

                if isinstance(value, Quantity):
                    new_column.unit = value.unit

            # Now add new column to the table
            self.add_columns([new_column], copy=False)

        else:
            n_cols = len(self.columns)

            if isinstance(item, six.string_types):
                # Set an existing column by first trying to replace, and if
                # this fails do an in-place update.  See definition of mask
                # property for discussion of the _setitem_inplace attribute.
                if (not getattr(self, '_setitem_inplace', False)
                        and not conf.replace_inplace):
                    try:
                        self._replace_column_warnings(item, value)
                        return
                    except Exception:
                        pass
                self.columns[item][:] = value

            elif isinstance(item, (int, np.integer)):
                # Set the corresponding row assuming value is an iterable.
                if not hasattr(value, '__len__'):
                    raise TypeError('Right side value must be iterable')

                if len(value) != n_cols:
                    raise ValueError('Right side value needs {0} elements (one for each column)'
                                     .format(n_cols))

                for col, val in zip(self.columns.values(), value):
                    col[item] = val

            elif (isinstance(item, slice) or
                  isinstance(item, np.ndarray) or
                  isinstance(item, list) or
                  (isinstance(item, tuple) and  # output from np.where
                   all(isinstance(x, np.ndarray) for x in item))):

                if isinstance(value, Table):
                    vals = (col for col in value.columns.values())

                elif isinstance(value, np.ndarray) and value.dtype.names:
                    vals = (value[name] for name in value.dtype.names)

                elif np.isscalar(value):
                    import itertools
                    vals = itertools.repeat(value, n_cols)

                else:  # Assume this is an iterable that will work
                    if len(value) != n_cols:
                        raise ValueError('Right side value needs {0} elements (one for each column)'
                                         .format(n_cols))
                    vals = value

                for col, val in zip(self.columns.values(), vals):
                    col[item] = val

            else:
                raise ValueError('Illegal type {0} for table item access'
                                 .format(type(item)))

    def __delitem__(self, item):
        if isinstance(item, six.string_types):
            self.remove_column(item)
        elif isinstance(item, tuple):
            self.remove_columns(item)

    def field(self, item):
        """Return column[item] for recarray compatibility."""
        return self.columns[item]

    @property
    def masked(self):
        return self._masked

    @masked.setter
    def masked(self, masked):
        raise Exception('Masked attribute is read-only (use t = Table(t, masked=True)'
                        ' to convert to a masked table)')

    def _set_masked(self, masked):
        """
        Set the table masked property.

        Parameters
        ----------
        masked : bool
            State of table masking (`True` or `False`)
        """
        if hasattr(self, '_masked'):
            # The only allowed change is from None to False or True, or False to True
            if self._masked is None and masked in [False, True]:
                self._masked = masked
            elif self._masked is False and masked is True:
                log.info("Upgrading Table to masked Table. Use Table.filled() to convert to unmasked table.")
                self._masked = masked
            elif self._masked is masked:
                raise Exception("Masked attribute is already set to {0}".format(masked))
            else:
                raise Exception("Cannot change masked attribute to {0} once it is set to {1}"
                                .format(masked, self._masked))
        else:
            if masked in [True, False, None]:
                self._masked = masked
            else:
                raise ValueError("masked should be one of True, False, None")
        if self._masked:
            self._column_class = self.MaskedColumn
        else:
            self._column_class = self.Column

    @property
    def ColumnClass(self):
        if self._column_class is None:
            return self.Column
        else:
            return self._column_class

    @property
    def dtype(self):
        return np.dtype([descr(col) for col in self.columns.values()])

    @property
    def colnames(self):
        return list(self.columns.keys())

    def keys(self):
        return list(self.columns.keys())

    def __len__(self):
        if len(self.columns) == 0:
            return 0

        lengths = set(len(col) for col in self.columns.values())
        if len(lengths) != 1:
            len_strs = [' {0} : {1}'.format(name, len(col)) for name, col in self.columns.items()]
            raise ValueError('Column length mismatch:\n{0}'.format('\n'.join(len_strs)))

        return lengths.pop()

    def index_column(self, name):
        """
        Return the positional index of column ``name``.

        Parameters
        ----------
        name : str
            column name

        Returns
        -------
        index : int
            Positional index of column ``name``.

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Get index of column 'b' of the table::

            >>> t.index_column('b')
            1
        """
        try:
            return self.colnames.index(name)
        except ValueError:
            raise ValueError("Column {0} does not exist".format(name))

    def add_column(self, col, index=None, rename_duplicate=False):
        """
        Add a new Column object ``col`` to the table.  If ``index``
        is supplied then insert column before ``index`` position
        in the list of columns, otherwise append column to the end
        of the list.

        Parameters
        ----------
        col : Column
            Column object to add.
        index : int or `None`
            Insert column before this position or at end (default)
        rename_duplicate : bool
            Uniquify column name if it already exist (default=False)

        Examples
        --------
        Create a table with two columns 'a' and 'b'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> print(t)
             a   b
            --- ---
              1 0.1
              2 0.2
              3 0.3

        Create a third column 'c' and append it to the end of the table::

            >>> col_c = Column(name='c', data=['x', 'y', 'z'])
            >>> t.add_column(col_c)
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Add column 'd' at position 1. Note that the column is inserted
        before the given index::

            >>> col_d = Column(name='d', data=['a', 'b', 'c'])
            >>> t.add_column(col_d, 1)
            >>> print(t)
             a   d   b   c
            --- --- --- ---
              1   a 0.1   x
              2   b 0.2   y
              3   c 0.3   z

        Add second column named 'b' with rename_duplicate::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3])
            >>> t.add_column(col_b, rename_duplicate=True)
            >>> print(t)
             a   b  b_1
            --- --- ---
              1 0.1 1.1
              2 0.2 1.2
              3 0.3 1.3

        To add several columns use add_columns.
        """
        if index is None:
            index = len(self.columns)
        self.add_columns([col], [index], rename_duplicate=rename_duplicate)

    def add_columns(self, cols, indexes=None, copy=True, rename_duplicate=False):
        """
        Add a list of new Column objects ``cols`` to the table.  If a
        corresponding list of ``indexes`` is supplied then insert column
        before each ``index`` position in the *original* list of columns,
        otherwise append columns to the end of the list.

        Parameters
        ----------
        cols : list of Columns
            Column objects to add.
        indexes : list of ints or `None`
            Insert column before this position or at end (default)
        copy : bool
            Make a copy of the new columns (default=True)
        rename_duplicate : bool
            Uniquify new column names if they duplicate the existing ones
            (default=False)


        Examples
        --------
        Create a table with two columns 'a' and 'b'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> print(t)
             a   b
            --- ---
              1 0.1
              2 0.2
              3 0.3

        Create column 'c' and 'd' and append them to the end of the table::

            >>> col_c = Column(name='c', data=['x', 'y', 'z'])
            >>> col_d = Column(name='d', data=['u', 'v', 'w'])
            >>> t.add_columns([col_c, col_d])
            >>> print(t)
             a   b   c   d
            --- --- --- ---
              1 0.1   x   u
              2 0.2   y   v
              3 0.3   z   w

        Add column 'c' at position 0 and column 'd' at position 1. Note that
        the columns are inserted before the given position::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> col_c = Column(name='c', data=['x', 'y', 'z'])
            >>> col_d = Column(name='d', data=['u', 'v', 'w'])
            >>> t.add_columns([col_c, col_d], [0, 1])
            >>> print(t)
             c   a   d   b
            --- --- --- ---
              x   1   u 0.1
              y   2   v 0.2
              z   3   w 0.3

        Add second column 'b' and column 'c' with ``rename_duplicate``::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3])
            >>> col_c = Column(name='c', data=['x', 'y', 'z'])
            >>> t.add_columns([col_b, col_c], rename_duplicate=True)
            >>> print(t)
             a   b  b_1  c
            --- --- --- ---
              1 0.1 1.1  x
              2 0.2 1.2  y
              3 0.3 1.3  z

        """
        if indexes is None:
            indexes = [len(self.columns)] * len(cols)
        elif len(indexes) != len(cols):
            raise ValueError('Number of indexes must match number of cols')

        if copy:
            cols = [col_copy(col) for col in cols]

        if len(self.columns) == 0:
            # No existing table data, init from cols
            newcols = cols
        else:
            newcols = list(self.columns.values())
            new_indexes = list(range(len(newcols) + 1))
            for col, index in zip(cols, indexes):
                i = new_indexes.index(index)
                new_indexes.insert(i, None)
                newcols.insert(i, col)

        if rename_duplicate:
            existing_names = set(self.colnames)
            for col in cols:
                i = 1
                orig_name = col.info.name
                while col.info.name in existing_names:
                    # If the column belongs to another table then copy it
                    # before renaming
                    if col.info.parent_table is not None:
                        col = col_copy(col)
                    new_name = '{0}_{1}'.format(orig_name, i)
                    col.info.name = new_name
                    i += 1
                existing_names.add(new_name)

        self._init_from_cols(newcols)

    def _replace_column_warnings(self, name, col):
        """
        Same as replace_column but issues warnings under various circumstances.
        """
        warns = conf.replace_warnings

        if 'refcount' in warns and name in self.colnames:
            refcount = sys.getrefcount(self[name])

        if name in self.colnames:
            old_col = self[name]

        # This may raise an exception (e.g. t['a'] = 1) in which case none of
        # the downstream code runs.
        self.replace_column(name, col)

        if 'always' in warns:
            warnings.warn("replaced column '{}'".format(name),
                          TableReplaceWarning, stacklevel=3)

        if 'slice' in warns:
            try:
                # Check for ndarray-subclass slice.  An unsliced instance
                # has an ndarray for the base while sliced has the same class
                # as parent.
                if isinstance(old_col.base, old_col.__class__):
                    msg = ("replaced column '{}' which looks like an array slice. "
                           "The new column no longer shares memory with the "
                           "original array.".format(name))
                    warnings.warn(msg, TableReplaceWarning, stacklevel=3)
            except AttributeError:
                pass

        if 'refcount' in warns:
            # Did reference count change?
            new_refcount = sys.getrefcount(self[name])
            if refcount != new_refcount:
                msg = ("replaced column '{}' and the number of references "
                       "to the column changed.".format(name))
                warnings.warn(msg, TableReplaceWarning, stacklevel=3)

        if 'attributes' in warns:
            # Any of the standard column attributes changed?
            changed_attrs = []
            new_col = self[name]
            # Check base DataInfo attributes that any column will have
            for attr in DataInfo.attr_names:
                if getattr(old_col.info, attr) != getattr(new_col.info, attr):
                    changed_attrs.append(attr)

            if changed_attrs:
                msg = ("replaced column '{}' and column attributes {} changed."
                       .format(name, changed_attrs))
                warnings.warn(msg, TableReplaceWarning, stacklevel=3)

    def replace_column(self, name, col):
        """
        Replace column ``name`` with the new ``col`` object.

        Parameters
        ----------
        name : str
            Name of column to replace
        col : column object (list, ndarray, Column, etc)
            New column object to replace the existing column

        Examples
        --------
        Replace column 'a' with a float version of itself::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
            >>> float_a = t['a'].astype(float)
            >>> t.replace_column('a', float_a)
        """
        if name not in self.colnames:
            raise ValueError('column name {0} is not in the table'.format(name))

        if self[name].info.indices:
            raise ValueError('cannot replace a table index column')

        t = self.__class__([col], names=[name])
        cols = OrderedDict(self.columns)
        cols[name] = t[name]
        self._init_from_cols(cols.values())

    def remove_row(self, index):
        """
        Remove a row from the table.

        Parameters
        ----------
        index : int
            Index of row to remove

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Remove row 1 from the table::

            >>> t.remove_row(1)
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              3 0.3   z

        To remove several rows at the same time use remove_rows.
        """
        # check the index against the types that work with np.delete
        if not isinstance(index, (six.integer_types, np.integer)):
            raise TypeError("Row index must be an integer")
        self.remove_rows(index)

    def remove_rows(self, row_specifier):
        """
        Remove rows from the table.

        Parameters
        ----------
        row_specifier : slice, int, or array of ints
            Specification for rows to remove

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Remove rows 0 and 2 from the table::

            >>> t.remove_rows([0, 2])
            >>> print(t)
             a   b   c
            --- --- ---
              2 0.2   y


        Note that there are no warnings if the slice operator extends
        outside the data::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> t.remove_rows(slice(10, 20, 1))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z
        """
        # Update indices
        for index in self.indices:
            index.remove_rows(row_specifier)

        keep_mask = np.ones(len(self), dtype=np.bool)
        keep_mask[row_specifier] = False

        columns = self.TableColumns()
        for name, col in self.columns.items():
            newcol = col[keep_mask]
            newcol.info.parent_table = self
            columns[name] = newcol

        self._replace_cols(columns)

        # Revert groups to default (ungrouped) state
        if hasattr(self, '_groups'):
            del self._groups

    def remove_column(self, name):
        """
        Remove a column from the table.

        This can also be done with::

          del table[name]

        Parameters
        ----------
        name : str
            Name of column to remove

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Remove column 'b' from the table::

            >>> t.remove_column('b')
            >>> print(t)
             a   c
            --- ---
              1   x
              2   y
              3   z

        To remove several columns at the same time use remove_columns.
        """

        self.remove_columns([name])

    def remove_columns(self, names):
        '''
        Remove several columns from the table.

        Parameters
        ----------
        names : list
            A list containing the names of the columns to remove

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...     names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Remove columns 'b' and 'c' from the table::

            >>> t.remove_columns(['b', 'c'])
            >>> print(t)
             a
            ---
              1
              2
              3

        Specifying only a single column also works. Remove column 'b' from the table::

            >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
            ...     names=('a', 'b', 'c'))
            >>> t.remove_columns('b')
            >>> print(t)
             a   c
            --- ---
              1   x
              2   y
              3   z

        This gives the same as using remove_column.
        '''
        if isinstance(names, six.string_types):
            names = [names]

        for name in names:
            if name not in self.columns:
                raise KeyError("Column {0} does not exist".format(name))

        for name in names:
            self.columns.pop(name)


    def _convert_string_dtype(self, in_kind, out_kind, python3_only):
        """
        Convert string-like columns to/from bytestring and unicode (internal only).

        Parameters
        ----------
        in_kind : str
            Input dtype.kind
        out_kind : str
            Output dtype.kind
        python3_only : bool
            Only do this operation for Python 3
        """
        if python3_only and six.PY2:
            return

        # If there are no `in_kind` columns then do nothing
        cols = self.columns.values()
        if not any(col.dtype.kind == in_kind for col in cols):
            return

        newcols = []
        for col in cols:
            if col.dtype.kind == in_kind:
                newdtype = re.sub(in_kind, out_kind, col.dtype.str)
                newcol = col.__class__(col, dtype=newdtype)
            else:
                newcol = col
            newcols.append(newcol)

        self._init_from_cols(newcols)

    def convert_bytestring_to_unicode(self, python3_only=False):
        """
        Convert bytestring columns (dtype.kind='S') to unicode (dtype.kind='U') assuming
        ASCII encoding.

        Internally this changes string columns to represent each character in the string
        with a 4-byte UCS-4 equivalent, so it is inefficient for memory but allows Python
        3 scripts to manipulate string arrays with natural syntax.

        The ``python3_only`` parameter is provided as a convenience so that code can
        be written in a Python 2 / 3 compatible way::

          >>> t = Table.read('my_data.fits')
          >>> t.convert_bytestring_to_unicode(python3_only=True)

        Parameters
        ----------
        python3_only : bool
            Only do this operation for Python 3
        """
        self._convert_string_dtype('S', 'U', python3_only)

    def convert_unicode_to_bytestring(self, python3_only=False):
        """
        Convert ASCII-only unicode columns (dtype.kind='U') to bytestring (dtype.kind='S').

        When exporting a unicode string array to a file in Python 3, it may be desirable
        to encode unicode columns as bytestrings.  This routine takes advantage of numpy
        automated conversion which works for strings that are pure ASCII.

        The ``python3_only`` parameter is provided as a convenience so that code can
        be written in a Python 2 / 3 compatible way::

          >>> t.convert_unicode_to_bytestring(python3_only=True)
          >>> t.write('my_data.fits')

        Parameters
        ----------
        python3_only : bool
            Only do this operation for Python 3
        """
        self._convert_string_dtype('U', 'S', python3_only)

    def keep_columns(self, names):
        '''
        Keep only the columns specified (remove the others).

        Parameters
        ----------
        names : list
            A list containing the names of the columns to keep. All other
            columns will be removed.

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1 0.1   x
              2 0.2   y
              3 0.3   z

        Specifying only a single column name keeps only this column.
        Keep only column 'a' of the table::

            >>> t.keep_columns('a')
            >>> print(t)
             a
            ---
              1
              2
              3

        Specifying a list of column names is keeps is also possible.
        Keep columns 'a' and 'c' of the table::

            >>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']],
            ...           names=('a', 'b', 'c'))
            >>> t.keep_columns(['a', 'c'])
            >>> print(t)
             a   c
            --- ---
              1   x
              2   y
              3   z
        '''

        if isinstance(names, six.string_types):
            names = [names]

        for name in names:
            if name not in self.columns:
                raise KeyError("Column {0} does not exist".format(name))

        remove = list(set(self.keys()) - set(names))

        self.remove_columns(remove)

    def rename_column(self, name, new_name):
        '''
        Rename a column.

        This can also be done directly with by setting the ``name`` attribute
        for a column::

          table[name].name = new_name

        TODO: this won't work for mixins

        Parameters
        ----------
        name : str
            The current name of the column.
        new_name : str
            The new name for the column

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

            >>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c'))
            >>> print(t)
             a   b   c
            --- --- ---
              1   3   5
              2   4   6

        Renaming column 'a' to 'aa'::

            >>> t.rename_column('a' , 'aa')
            >>> print(t)
             aa  b   c
            --- --- ---
              1   3   5
              2   4   6
        '''

        if name not in self.keys():
            raise KeyError("Column {0} does not exist".format(name))

        self.columns[name].info.name = new_name

    def add_row(self, vals=None, mask=None):
        """Add a new row to the end of the table.

        The ``vals`` argument can be:

        sequence (e.g. tuple or list)
            Column values in the same order as table columns.
        mapping (e.g. dict)
            Keys corresponding to column names.  Missing values will be
            filled with np.zeros for the column dtype.
        `None`
            All values filled with np.zeros for the column dtype.

        This method requires that the Table object "owns" the underlying array
        data.  In particular one cannot add a row to a Table that was
        initialized with copy=False from an existing array.

        The ``mask`` attribute should give (if desired) the mask for the
        values. The type of the mask should match that of the values, i.e. if
        ``vals`` is an iterable, then ``mask`` should also be an iterable
        with the same length, and if ``vals`` is a mapping, then ``mask``
        should be a dictionary.

        Parameters
        ----------
        vals : tuple, list, dict or `None`
            Use the specified values in the new row
        mask : tuple, list, dict or `None`
            Use the specified mask values in the new row

        Examples
        --------
        Create a table with three columns 'a', 'b' and 'c'::

           >>> t = Table([[1,2],[4,5],[7,8]], names=('a','b','c'))
           >>> print(t)
            a   b   c
           --- --- ---
             1   4   7
             2   5   8

        Adding a new row with entries '3' in 'a', '6' in 'b' and '9' in 'c'::

           >>> t.add_row([3,6,9])
           >>> print(t)
             a   b   c
             --- --- ---
             1   4   7
             2   5   8
             3   6   9
        """
        self.insert_row(len(self), vals, mask)

    def insert_row(self, index, vals=None, mask=None):
        """Add a new row before the given ``index`` position in the table.

        The ``vals`` argument can be:

        sequence (e.g. tuple or list)
            Column values in the same order as table columns.
        mapping (e.g. dict)
            Keys corresponding to column names.  Missing values will be
            filled with np.zeros for the column dtype.
        `None`
            All values filled with np.zeros for the column dtype.

        The ``mask`` attribute should give (if desired) the mask for the
        values. The type of the mask should match that of the values, i.e. if
        ``vals`` is an iterable, then ``mask`` should also be an iterable
        with the same length, and if ``vals`` is a mapping, then ``mask``
        should be a dictionary.

        Parameters
        ----------
        vals : tuple, list, dict or `None`
            Use the specified values in the new row
        mask : tuple, list, dict or `None`
            Use the specified mask values in the new row
        """
        colnames = self.colnames

        N = len(self)
        if index < -N or index > N:
            raise IndexError("Index {0} is out of bounds for table with length {1}"
                             .format(index, N))
        if index < 0:
            index += N

        def _is_mapping(obj):
            """Minimal checker for mapping (dict-like) interface for obj"""
            attrs = ('__getitem__', '__len__', '__iter__', 'keys', 'values', 'items')
            return all(hasattr(obj, attr) for attr in attrs)

        if mask is not None and not self.masked:
            # Possibly issue upgrade warning and update self.ColumnClass.  This
            # does not change the existing columns.
            self._set_masked(True)

        if _is_mapping(vals) or vals is None:
            # From the vals and/or mask mappings create the corresponding lists
            # that have entries for each table column.
            if mask is not None and not _is_mapping(mask):
                raise TypeError("Mismatch between type of vals and mask")

            # Now check that the mask is specified for the same keys as the
            # values, otherwise things get really confusing.
            if mask is not None and set(vals.keys()) != set(mask.keys()):
                raise ValueError('keys in mask should match keys in vals')

            if vals and any(name not in colnames for name in vals):
                raise ValueError('Keys in vals must all be valid column names')

            vals_list = []
            mask_list = []

            for name in colnames:
                if vals and name in vals:
                    vals_list.append(vals[name])
                    mask_list.append(False if mask is None else mask[name])
                else:
                    col = self[name]
                    if hasattr(col, 'dtype'):
                        # Make a placeholder zero element of the right type which is masked.
                        # This assumes the appropriate insert() method will broadcast a
                        # numpy scalar to the right shape.
                        vals_list.append(np.zeros(shape=(), dtype=col.dtype))

                        # For masked table any unsupplied values are masked by default.
                        mask_list.append(self.masked and vals is not None)
                    else:
                        raise ValueError("Value must be supplied for column '{0}'".format(name))

            vals = vals_list
            mask = mask_list

        if isiterable(vals):
            if mask is not None and (not isiterable(mask) or _is_mapping(mask)):
                raise TypeError("Mismatch between type of vals and mask")

            if len(self.columns) != len(vals):
                raise ValueError('Mismatch between number of vals and columns')

            if mask is not None:
                if len(self.columns) != len(mask):
                    raise ValueError('Mismatch between number of masks and columns')
            else:
                mask = [False] * len(self.columns)

        else:
            raise TypeError('Vals must be an iterable or mapping or None')

        columns = self.TableColumns()
        try:
            # Insert val at index for each column
            for name, col, val, mask_ in zip(colnames, self.columns.values(), vals, mask):
                # If the new row caused a change in self.ColumnClass then
                # Column-based classes need to be converted first.  This is
                # typical for adding a row with mask values to an unmasked table.
                if isinstance(col, Column) and not isinstance(col, self.ColumnClass):
                    col = self.ColumnClass(col, copy=False)

                newcol = col.insert(index, val)
                if not isinstance(newcol, BaseColumn):
                    newcol.info.name = name
                    if self.masked:
                        newcol.mask = FalseArray(newcol.shape)

                if len(newcol) != N + 1:
                    raise ValueError('Incorrect length for column {0} after inserting {1}'
                                     ' (expected {2}, got {3})'
                                     .format(name, val, len(newcol), N + 1))
                newcol.info.parent_table = self

                # Set mask if needed
                if self.masked:
                    newcol.mask[index] = mask_

                columns[name] = newcol

            # insert row in indices
            for table_index in self.indices:
                table_index.insert_row(index, vals, self.columns.values())

        except Exception as err:
            raise ValueError("Unable to insert row because of exception in column '{0}':\n{1}"
                             .format(name, err))
        else:
            self._replace_cols(columns)

            # Revert groups to default (ungrouped) state
            if hasattr(self, '_groups'):
                del self._groups

    def _replace_cols(self, columns):
        for col, new_col in zip(self.columns.values(), columns.values()):
            new_col.info.indices = []
            for index in col.info.indices:
                index.columns[index.col_position(col.info.name)] = new_col
                new_col.info.indices.append(index)

        self.columns = columns

    def argsort(self, keys=None, kind=None):
        """
        Return the indices which would sort the table according to one or
        more key columns.  This simply calls the `numpy.argsort` function on
        the table with the ``order`` parameter set to ``keys``.

        Parameters
        ----------
        keys : str or list of str
            The column name(s) to order the table by
        kind : {'quicksort', 'mergesort', 'heapsort'}, optional
            Sorting algorithm.

        Returns
        -------
        index_array : ndarray, int
            Array of indices that sorts the table by the specified key
            column(s).
        """
        if isinstance(keys, six.string_types):
            keys = [keys]

        # use index sorted order if possible
        if keys is not None:
            index = get_index(self, self[keys])
            if index is not None:
                return index.sorted_data()

        kwargs = {}
        if keys:
            kwargs['order'] = keys
        if kind:
            kwargs['kind'] = kind

        if keys:
            data = self[keys].as_array()
        else:
            data = self.as_array()

        return data.argsort(**kwargs)

    def sort(self, keys=None):
        '''
        Sort the table according to one or more keys. This operates
        on the existing table and does not return a new table.

        Parameters
        ----------
        keys : str or list of str
            The key(s) to order the table by. If None, use the
            primary index of the Table.

        Examples
        --------
        Create a table with 3 columns::

            >>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'],
            ...         [12,15,18]], names=('firstname','name','tel'))
            >>> print(t)
            firstname   name  tel
            --------- ------- ---
                  Max  Miller  12
                   Jo  Miller  15
                 John Jackson  18

        Sorting according to standard sorting rules, first 'name' then 'firstname'::

            >>> t.sort(['name','firstname'])
            >>> print(t)
            firstname   name  tel
            --------- ------- ---
                 John Jackson  18
                   Jo  Miller  15
                  Max  Miller  12
        '''
        if keys is None:
            if not self.indices:
                raise ValueError("Table sort requires input keys or a table index")
            keys = [x.info.name for x in self.indices[0].columns]

        if isinstance(keys, six.string_types):
            keys = [keys]

        indexes = self.argsort(keys)
        sort_index = get_index(self, self[keys])
        if sort_index is not None:
            # avoid inefficient relabelling of sorted index
            prev_frozen = sort_index._frozen
            sort_index._frozen = True

        for col in self.columns.values():
            col[:] = col.take(indexes, axis=0)

        if sort_index is not None:
            # undo index freeze
            sort_index._frozen = prev_frozen
            # now relabel the sort index appropriately
            sort_index.sort()


    def reverse(self):
        '''
        Reverse the row order of table rows.  The table is reversed
        in place and there are no function arguments.

        Examples
        --------
        Create a table with three columns::

            >>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'],
            ...         [12,15,18]], names=('firstname','name','tel'))
            >>> print(t)
            firstname   name  tel
            --------- ------- ---
                  Max  Miller  12
                   Jo  Miller  15
                 John Jackson  18

        Reversing order::

            >>> t.reverse()
            >>> print(t)
            firstname   name  tel
            --------- ------- ---
                 John Jackson  18
                   Jo  Miller  15
                  Max  Miller  12
        '''
        for col in self.columns.values():
            col[:] = col[::-1]
        for index in self.indices:
            index.reverse()

    @classmethod
    def read(cls, *args, **kwargs):
        """
        Read and parse a data table and return as a Table.

        This function provides the Table interface to the astropy unified I/O
        layer.  This allows easily reading a file in many supported data formats
        using syntax such as::

          >>> from astropy.table import Table
          >>> dat = Table.read('table.dat', format='ascii')
          >>> events = Table.read('events.fits', format='fits')

        The arguments and keywords (other than ``format``) provided to this function are
        passed through to the underlying data reader (e.g. `~astropy.io.ascii.read`).
        """
        return io_registry.read(cls, *args, **kwargs)

    def write(self, *args, **kwargs):
        """
        Write this Table object out in the specified format.

        This function provides the Table interface to the astropy unified I/O
        layer.  This allows easily writing a file in many supported data formats
        using syntax such as::

          >>> from astropy.table import Table
          >>> dat = Table([[1, 2], [3, 4]], names=('a', 'b'))
          >>> dat.write('table.dat', format='ascii')

        The arguments and keywords (other than ``format``) provided to this function are
        passed through to the underlying data reader (e.g. `~astropy.io.ascii.write`).
        """
        io_registry.write(self, *args, **kwargs)

    def copy(self, copy_data=True):
        '''
        Return a copy of the table.

        Parameters
        ----------
        copy_data : bool
            If `True` (the default), copy the underlying data array.
            Otherwise, use the same data array

        .. note::
            The ``meta`` is always deepcopied regardless of the value for
            ``copy_data``.
        '''
        out = self.__class__(self, copy=copy_data)

        # If the current table is grouped then do the same in the copy
        if hasattr(self, '_groups'):
            out._groups = groups.TableGroups(out, indices=self._groups._indices,
                                             keys=self._groups._keys)
        return out

    def __deepcopy__(self, memo=None):
        return self.copy(True)

    def __copy__(self):
        return self.copy(False)

    def __lt__(self, other):
        if six.PY2:
            raise TypeError("unorderable types: Table() < {0}".
                            format(str(type(other))))
        else:
            return super(Table, self).__lt__(other)

    def __gt__(self, other):
        if six.PY2:
            raise TypeError("unorderable types: Table() > {0}".
                            format(str(type(other))))
        else:
            return super(Table, self).__gt__(other)

    def __le__(self, other):
        if six.PY2:
            raise TypeError("unorderable types: Table() <= {0}".
                            format(str(type(other))))
        else:
            return super(Table, self).__le__(other)

    def __ge__(self, other):
        if six.PY2:
            raise TypeError("unorderable types: Table() >= {0}".
                            format(str(type(other))))
        else:
            return super(Table, self).__ge__(other)

    def __eq__(self, other):

        if isinstance(other, Table):
            other = other.as_array()

        if self.masked:
            if isinstance(other, np.ma.MaskedArray):
                result = self.as_array() == other
            else:
                # If mask is True, then by definition the row doesn't match
                # because the other array is not masked.
                false_mask = np.zeros(1, dtype=[(n, bool) for n in self.dtype.names])
                result = (self.as_array().data == other) & (self.mask == false_mask)
        else:
            if isinstance(other, np.ma.MaskedArray):
                # If mask is True, then by definition the row doesn't match
                # because the other array is not masked.
                false_mask = np.zeros(1, dtype=[(n, bool) for n in other.dtype.names])
                result = (self.as_array() == other.data) & (other.mask == false_mask)
            else:
                result = self.as_array() == other

        return result

    def __ne__(self, other):
        return ~self.__eq__(other)

    @property
    def groups(self):
        if not hasattr(self, '_groups'):
            self._groups = groups.TableGroups(self)
        return self._groups

    def group_by(self, keys):
        """
        Group this table by the specified ``keys``

        This effectively splits the table into groups which correspond to
        unique values of the ``keys`` grouping object.  The output is a new
        `TableGroups` which contains a copy of this table but sorted by row
        according to ``keys``.

        The ``keys`` input to `group_by` can be specified in different ways:

          - String or list of strings corresponding to table column name(s)
          - Numpy array (homogeneous or structured) with same length as this table
          - `Table` with same length as this table

        Parameters
        ----------
        keys : str, list of str, numpy array, or `Table`
            Key grouping object

        Returns
        -------
        out : `Table`
            New table with groups set
        """
        if self.has_mixin_columns:
            raise NotImplementedError('group_by not available for tables with mixin columns')

        return groups.table_group_by(self, keys)

    def to_pandas(self):
        """
        Return a :class:`pandas.DataFrame` instance

        Returns
        -------
        dataframe : :class:`pandas.DataFrame`
            A pandas :class:`pandas.DataFrame` instance

        Raises
        ------
        ImportError
            If pandas is not installed
        ValueError
            If the Table contains mixin or multi-dimensional columns
        """
        from pandas import DataFrame

        if self.has_mixin_columns:
            raise ValueError("Cannot convert a table with mixin columns to a pandas DataFrame")

        if any(getattr(col, 'ndim', 1) > 1 for col in self.columns.values()):
            raise ValueError("Cannot convert a table with multi-dimensional columns to a pandas DataFrame")

        out = OrderedDict()

        for name, column in self.columns.items():
            if isinstance(column, MaskedColumn):
                if column.dtype.kind in ['i', 'u']:
                    out[name] = column.astype(float).filled(np.nan)
                elif column.dtype.kind in ['f', 'c']:
                    out[name] = column.filled(np.nan)
                else:
                    out[name] = column.astype(np.object).filled(np.nan)
            else:
                out[name] = column

            if out[name].dtype.byteorder not in ('=', '|'):
                out[name] = out[name].byteswap().newbyteorder()

        return DataFrame(out)

    @classmethod
    def from_pandas(cls, dataframe):
        """
        Create a `Table` from a :class:`pandas.DataFrame` instance

        Parameters
        ----------
        dataframe : :class:`pandas.DataFrame`
            The pandas :class:`pandas.DataFrame` instance

        Returns
        -------
        table : `Table`
            A `Table` (or subclass) instance
        """

        out = OrderedDict()

        for name in dataframe.columns:
            column = dataframe[name]
            mask = np.array(column.isnull())
            data = np.array(column)

            if data.dtype.kind == 'O':
                # If all elements of an object array are string-like or np.nan
                # then coerce back to a native numpy str/unicode array.
                string_types = six.string_types
                if not six.PY2:
                    string_types += (bytes,)
                nan = np.nan
                if all(isinstance(x, string_types) or x is nan for x in data):
                    # Force any missing (null) values to b''.  Numpy will
                    # upcast to str/unicode as needed.
                    data[mask] = b''

                    # When the numpy object array is represented as a list then
                    # numpy initializes to the correct string or unicode type.
                    data = np.array([x for x in data])

            if np.any(mask):
                out[name] = MaskedColumn(data=data, name=name, mask=mask)
            else:
                out[name] = Column(data=data, name=name)

        return cls(out)

    info = TableInfo()


class QTable(Table):
    """A class to represent tables of heterogeneous data.

    `QTable` provides a class for heterogeneous tabular data which can be
    easily modified, for instance adding columns or new rows.

    The `QTable` class is identical to `Table` except that columns with an
    associated ``unit`` attribute are converted to `~astropy.units.Quantity`
    objects.

    Parameters
    ----------
    data : numpy ndarray, dict, list, Table, or table-like object, optional
        Data to initialize table.
    masked : bool, optional
        Specify whether the table is masked.
    names : list, optional
        Specify column names
    dtype : list, optional
        Specify column data types
    meta : dict, optional
        Metadata associated with the table.
    copy : bool, optional
        Copy the input data (default=True).
    rows : numpy ndarray, list of lists, optional
        Row-oriented data for table instead of ``data`` argument
    copy_indices : bool, optional
        Copy any indices in the input data (default=True)
    **kwargs : dict, optional
        Additional keyword args when converting table-like object

    """
    def _add_as_mixin_column(self, col):
        """
        Determine if ``col`` should be added to the table directly as
        a mixin column.
        """
        return has_info_class(col, MixinInfo)

    def _convert_col_for_table(self, col):
        if (isinstance(col, Column) and getattr(col, 'unit', None) is not None):
            # We need to turn the column into a quantity, or a subclass
            # identified in the unit (such as u.mag()).
            q_cls = getattr(col.unit, '_quantity_class', Quantity)
            qcol = q_cls(col.data, col.unit, copy=False)
            qcol.info = col.info
            col = qcol
        else:
            col = super(QTable, self)._convert_col_for_table(col)

        return col

class NdarrayMixin(np.ndarray):
    """
    Mixin column class to allow storage of arbitrary numpy
    ndarrays within a Table.  This is a subclass of numpy.ndarray
    and has the same initialization options as ndarray().
    """
    info = ParentDtypeInfo()

    def __new__(cls, obj, *args, **kwargs):
        self = np.array(obj, *args, **kwargs).view(cls)
        if 'info' in getattr(obj, '__dict__', ()):
            self.info = obj.info
        return self

    def __array_finalize__(self, obj):
        if obj is None:
            return

        if six.callable(super(NdarrayMixin, self).__array_finalize__):
            super(NdarrayMixin, self).__array_finalize__(obj)

        # Self was created from template (e.g. obj[slice] or (obj * 2))
        # or viewcast e.g. obj.view(Column).  In either case we want to
        # init Column attributes for self from obj if possible.
        if 'info' in getattr(obj, '__dict__', ()):
            self.info = obj.info

    def __reduce__(self):
        # patch to pickle Quantity objects (ndarray subclasses), see
        # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html

        object_state = list(super(NdarrayMixin, self).__reduce__())
        object_state[2] = (object_state[2], self.__dict__)
        return tuple(object_state)

    def __setstate__(self, state):
        # patch to unpickle NdarrayMixin objects (ndarray subclasses), see
        # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html

        nd_state, own_state = state
        super(NdarrayMixin, self).__setstate__(nd_state)
        self.__dict__.update(own_state)