1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
# TEST_UNICODE_LITERALS
import numpy as np
from ...tests.helper import pytest, catch_warnings
from ...table import Table, Column
from ...utils.exceptions import AstropyUserWarning
def sort_eq(list1, list2):
return sorted(list1) == sorted(list2)
def test_column_group_by(T1):
for masked in (False, True):
t1 = Table(T1, masked=masked)
t1a = t1['a'].copy()
# Group by a Column (i.e. numpy array)
t1ag = t1a.group_by(t1['a'])
assert np.all(t1ag.groups.indices == np.array([0, 1, 4, 8]))
# Group by a Table
t1ag = t1a.group_by(t1['a', 'b'])
assert np.all(t1ag.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8]))
# Group by a numpy structured array
t1ag = t1a.group_by(t1['a', 'b'].as_array())
assert np.all(t1ag.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8]))
def test_table_group_by(T1):
"""
Test basic table group_by functionality for possible key types and for
masked/unmasked tables.
"""
for masked in (False, True):
t1 = Table(T1, masked=masked)
# Group by a single column key specified by name
tg = t1.group_by('a')
assert np.all(tg.groups.indices == np.array([0, 1, 4, 8]))
assert str(tg.groups) == "<TableGroups indices=[0 1 4 8]>"
assert str(tg['a'].groups) == "<ColumnGroups indices=[0 1 4 8]>"
# Sorted by 'a' and in original order for rest
assert tg.pformat() == [' a b c d ',
'--- --- --- ---',
' 0 a 0.0 4',
' 1 b 3.0 5',
' 1 a 2.0 6',
' 1 a 1.0 7',
' 2 c 7.0 0',
' 2 b 5.0 1',
' 2 b 6.0 2',
' 2 a 4.0 3']
assert tg.meta['ta'] == 1
assert tg['c'].meta['a'] == 1
assert tg['c'].description == 'column c'
# Group by a table column
tg2 = t1.group_by(t1['a'])
assert tg.pformat() == tg2.pformat()
# Group by two columns spec'd by name
for keys in (['a', 'b'], ('a', 'b')):
tg = t1.group_by(keys)
assert np.all(tg.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8]))
# Sorted by 'a', 'b' and in original order for rest
assert tg.pformat() == [' a b c d ',
'--- --- --- ---',
' 0 a 0.0 4',
' 1 a 2.0 6',
' 1 a 1.0 7',
' 1 b 3.0 5',
' 2 a 4.0 3',
' 2 b 5.0 1',
' 2 b 6.0 2',
' 2 c 7.0 0']
# Group by a Table
tg2 = t1.group_by(t1['a', 'b'])
assert tg.pformat() == tg2.pformat()
# Group by a structured array
tg2 = t1.group_by(t1['a', 'b'].as_array())
assert tg.pformat() == tg2.pformat()
# Group by a simple ndarray
tg = t1.group_by(np.array([0, 1, 0, 1, 2, 1, 0, 0]))
assert np.all(tg.groups.indices == np.array([0, 4, 7, 8]))
assert tg.pformat() == [' a b c d ',
'--- --- --- ---',
' 2 c 7.0 0',
' 2 b 6.0 2',
' 1 a 2.0 6',
' 1 a 1.0 7',
' 2 b 5.0 1',
' 2 a 4.0 3',
' 1 b 3.0 5',
' 0 a 0.0 4']
def test_groups_keys(T1):
tg = T1.group_by('a')
keys = tg.groups.keys
assert keys.dtype.names == ('a',)
assert np.all(keys['a'] == np.array([0, 1, 2]))
tg = T1.group_by(['a', 'b'])
keys = tg.groups.keys
assert keys.dtype.names == ('a', 'b')
assert np.all(keys['a'] == np.array([0, 1, 1, 2, 2, 2]))
assert np.all(keys['b'] == np.array(['a', 'a', 'b', 'a', 'b', 'c']))
# Grouping by Column ignores column name
tg = T1.group_by(T1['b'])
keys = tg.groups.keys
assert keys.dtype.names is None
def test_groups_iterator(T1):
tg = T1.group_by('a')
for ii, group in enumerate(tg.groups):
assert group.pformat() == tg.groups[ii].pformat()
assert group['a'][0] == tg['a'][tg.groups.indices[ii]]
def test_grouped_copy(T1):
"""
Test that copying a table or column copies the groups properly
"""
for masked in (False, True):
t1 = Table(T1, masked=masked)
tg = t1.group_by('a')
tgc = tg.copy()
assert np.all(tgc.groups.indices == tg.groups.indices)
assert np.all(tgc.groups.keys == tg.groups.keys)
tac = tg['a'].copy()
assert np.all(tac.groups.indices == tg['a'].groups.indices)
c1 = t1['a'].copy()
gc1 = c1.group_by(t1['a'])
gc1c = gc1.copy()
assert np.all(gc1c.groups.indices == np.array([0, 1, 4, 8]))
def test_grouped_slicing(T1):
"""
Test that slicing a table removes previous grouping
"""
for masked in (False, True):
t1 = Table(T1, masked=masked)
# Regular slice of a table
tg = t1.group_by('a')
tg2 = tg[3:5]
assert np.all(tg2.groups.indices == np.array([0, len(tg2)]))
assert tg2.groups.keys is None
def test_group_column_from_table(T1):
"""
Group a column that is part of a table
"""
cg = T1['c'].group_by(np.array(T1['a']))
assert np.all(cg.groups.keys == np.array([0, 1, 2]))
assert np.all(cg.groups.indices == np.array([0, 1, 4, 8]))
def test_table_groups_mask_index(T1):
"""
Use boolean mask as item in __getitem__ for groups
"""
for masked in (False, True):
t1 = Table(T1, masked=masked).group_by('a')
t2 = t1.groups[np.array([True, False, True])]
assert len(t2.groups) == 2
assert t2.groups[0].pformat() == t1.groups[0].pformat()
assert t2.groups[1].pformat() == t1.groups[2].pformat()
assert np.all(t2.groups.keys['a'] == np.array([0, 2]))
def test_table_groups_array_index(T1):
"""
Use numpy array as item in __getitem__ for groups
"""
for masked in (False, True):
t1 = Table(T1, masked=masked).group_by('a')
t2 = t1.groups[np.array([0, 2])]
assert len(t2.groups) == 2
assert t2.groups[0].pformat() == t1.groups[0].pformat()
assert t2.groups[1].pformat() == t1.groups[2].pformat()
assert np.all(t2.groups.keys['a'] == np.array([0, 2]))
def test_table_groups_slicing(T1):
"""
Test that slicing table groups works
"""
for masked in (False, True):
t1 = Table(T1, masked=masked).group_by('a')
# slice(0, 2)
t2 = t1.groups[0:2]
assert len(t2.groups) == 2
assert t2.groups[0].pformat() == t1.groups[0].pformat()
assert t2.groups[1].pformat() == t1.groups[1].pformat()
assert np.all(t2.groups.keys['a'] == np.array([0, 1]))
# slice(1, 2)
t2 = t1.groups[1:2]
assert len(t2.groups) == 1
assert t2.groups[0].pformat() == t1.groups[1].pformat()
assert np.all(t2.groups.keys['a'] == np.array([1]))
# slice(0, 3, 2)
t2 = t1.groups[0:3:2]
assert len(t2.groups) == 2
assert t2.groups[0].pformat() == t1.groups[0].pformat()
assert t2.groups[1].pformat() == t1.groups[2].pformat()
assert np.all(t2.groups.keys['a'] == np.array([0, 2]))
def test_grouped_item_access(T1):
"""
Test that column slicing preserves grouping
"""
for masked in (False, True):
t1 = Table(T1, masked=masked)
# Regular slice of a table
tg = t1.group_by('a')
tgs = tg['a', 'c', 'd']
assert np.all(tgs.groups.keys == tg.groups.keys)
assert np.all(tgs.groups.indices == tg.groups.indices)
tgsa = tgs.groups.aggregate(np.sum)
assert tgsa.pformat() == [' a c d ',
'--- ---- ---',
' 0 0.0 4',
' 1 6.0 18',
' 2 22.0 6']
tgs = tg['c', 'd']
assert np.all(tgs.groups.keys == tg.groups.keys)
assert np.all(tgs.groups.indices == tg.groups.indices)
tgsa = tgs.groups.aggregate(np.sum)
assert tgsa.pformat() == [' c d ',
'---- ---',
' 0.0 4',
' 6.0 18',
'22.0 6']
def test_mutable_operations(T1):
"""
Operations like adding or deleting a row should removing grouping,
but adding or removing or renaming a column should retain grouping.
"""
for masked in (False, True):
t1 = Table(T1, masked=masked)
# add row
tg = t1.group_by('a')
tg.add_row((0, 'a', 3.0, 4))
assert np.all(tg.groups.indices == np.array([0, len(tg)]))
assert tg.groups.keys is None
# remove row
tg = t1.group_by('a')
tg.remove_row(4)
assert np.all(tg.groups.indices == np.array([0, len(tg)]))
assert tg.groups.keys is None
# add column
tg = t1.group_by('a')
indices = tg.groups.indices.copy()
tg.add_column(Column(name='e', data=np.arange(len(tg))))
assert np.all(tg.groups.indices == indices)
assert np.all(tg['e'].groups.indices == indices)
assert np.all(tg['e'].groups.keys == tg.groups.keys)
# remove column (not key column)
tg = t1.group_by('a')
tg.remove_column('b')
assert np.all(tg.groups.indices == indices)
# Still has original key col names
assert tg.groups.keys.dtype.names == ('a',)
assert np.all(tg['a'].groups.indices == indices)
# remove key column
tg = t1.group_by('a')
tg.remove_column('a')
assert np.all(tg.groups.indices == indices)
assert tg.groups.keys.dtype.names == ('a',)
assert np.all(tg['b'].groups.indices == indices)
# rename key column
tg = t1.group_by('a')
tg.rename_column('a', 'aa')
assert np.all(tg.groups.indices == indices)
assert tg.groups.keys.dtype.names == ('a',)
assert np.all(tg['aa'].groups.indices == indices)
def test_group_by_masked(T1):
t1m = Table(T1, masked=True)
t1m['c'].mask[4] = True
t1m['d'].mask[5] = True
assert t1m.group_by('a').pformat() == [' a b c d ',
'--- --- --- ---',
' 0 a -- 4',
' 1 b 3.0 --',
' 1 a 2.0 6',
' 1 a 1.0 7',
' 2 c 7.0 0',
' 2 b 5.0 1',
' 2 b 6.0 2',
' 2 a 4.0 3']
def test_group_by_errors(T1):
"""
Appropriate errors get raised.
"""
# Bad column name as string
with pytest.raises(ValueError):
T1.group_by('f')
# Bad column names in list
with pytest.raises(ValueError):
T1.group_by(['f', 'g'])
# Wrong length array
with pytest.raises(ValueError):
T1.group_by(np.array([1, 2]))
# Wrong type
with pytest.raises(TypeError):
T1.group_by(None)
# Masked key column
t1 = Table(T1, masked=True)
t1['a'].mask[4] = True
with pytest.raises(ValueError):
t1.group_by('a')
def test_groups_keys_meta(T1):
"""
Make sure the keys meta['grouped_by_table_cols'] is working.
"""
# Group by column in this table
tg = T1.group_by('a')
assert tg.groups.keys.meta['grouped_by_table_cols'] is True
assert tg['c'].groups.keys.meta['grouped_by_table_cols'] is True
assert tg.groups[1].groups.keys.meta['grouped_by_table_cols'] is True
assert (tg['d'].groups[np.array([False, True, True])]
.groups.keys.meta['grouped_by_table_cols'] is True)
# Group by external Table
tg = T1.group_by(T1['a', 'b'])
assert tg.groups.keys.meta['grouped_by_table_cols'] is False
assert tg['c'].groups.keys.meta['grouped_by_table_cols'] is False
assert tg.groups[1].groups.keys.meta['grouped_by_table_cols'] is False
# Group by external numpy array
tg = T1.group_by(T1['a', 'b'].as_array())
assert not hasattr(tg.groups.keys, 'meta')
assert not hasattr(tg['c'].groups.keys, 'meta')
# Group by Column
tg = T1.group_by(T1['a'])
assert 'grouped_by_table_cols' not in tg.groups.keys.meta
assert 'grouped_by_table_cols' not in tg['c'].groups.keys.meta
def test_table_aggregate(T1):
"""
Aggregate a table
"""
# Table with only summable cols
t1 = T1['a', 'c', 'd']
tg = t1.group_by('a')
tga = tg.groups.aggregate(np.sum)
assert tga.pformat() == [' a c d ',
'--- ---- ---',
' 0 0.0 4',
' 1 6.0 18',
' 2 22.0 6']
# Reverts to default groups
assert np.all(tga.groups.indices == np.array([0, 3]))
assert tga.groups.keys is None
# metadata survives
assert tga.meta['ta'] == 1
assert tga['c'].meta['a'] == 1
assert tga['c'].description == 'column c'
# Aggregate with np.sum with masked elements. This results
# in one group with no elements, hence a nan result and conversion
# to float for the 'd' column.
t1m = Table(t1, masked=True)
t1m['c'].mask[4:6] = True
t1m['d'].mask[4:6] = True
tg = t1m.group_by('a')
with catch_warnings(Warning) as warning_lines:
tga = tg.groups.aggregate(np.sum)
assert warning_lines[0].category == UserWarning
assert "converting a masked element to nan" in str(warning_lines[0].message)
assert tga.pformat() == [' a c d ',
'--- ---- ----',
' 0 nan nan',
' 1 3.0 13.0',
' 2 22.0 6.0']
# Aggregrate with np.sum with masked elements, but where every
# group has at least one remaining (unmasked) element. Then
# the int column stays as an int.
t1m = Table(t1, masked=True)
t1m['c'].mask[5] = True
t1m['d'].mask[5] = True
tg = t1m.group_by('a')
tga = tg.groups.aggregate(np.sum)
assert tga.pformat() == [' a c d ',
'--- ---- ---',
' 0 0.0 4',
' 1 3.0 13',
' 2 22.0 6']
# Aggregate with a column type that cannot by supplied to the aggregating
# function. This raises a warning but still works.
tg = T1.group_by('a')
with catch_warnings(Warning) as warning_lines:
tga = tg.groups.aggregate(np.sum)
assert warning_lines[0].category == AstropyUserWarning
assert "Cannot aggregate column" in str(warning_lines[0].message)
assert tga.pformat() == [' a c d ',
'--- ---- ---',
' 0 0.0 4',
' 1 6.0 18',
' 2 22.0 6']
def test_table_aggregate_reduceat(T1):
"""
Aggregate table with functions which have a reduceat method
"""
# Comparison functions without reduceat
def np_mean(x):
return np.mean(x)
def np_sum(x):
return np.sum(x)
def np_add(x):
return np.add(x)
# Table with only summable cols
t1 = T1['a', 'c', 'd']
tg = t1.group_by('a')
# Comparison
tga_r = tg.groups.aggregate(np.sum)
tga_a = tg.groups.aggregate(np.add)
tga_n = tg.groups.aggregate(np_sum)
assert np.all(tga_r == tga_n)
assert np.all(tga_a == tga_n)
assert tga_n.pformat() == [' a c d ',
'--- ---- ---',
' 0 0.0 4',
' 1 6.0 18',
' 2 22.0 6']
tga_r = tg.groups.aggregate(np.mean)
tga_n = tg.groups.aggregate(np_mean)
assert np.all(tga_r == tga_n)
assert tga_n.pformat() == [' a c d ',
'--- --- ---',
' 0 0.0 4.0',
' 1 2.0 6.0',
' 2 5.5 1.5']
# Binary ufunc np_add should raise warning without reduceat
t2 = T1['a', 'c']
tg = t2.group_by('a')
with catch_warnings(Warning) as warning_lines:
tga = tg.groups.aggregate(np_add)
assert warning_lines[0].category == AstropyUserWarning
assert "Cannot aggregate column" in str(warning_lines[0].message)
assert tga.pformat() == [' a ',
'---',
' 0',
' 1',
' 2']
def test_column_aggregate(T1):
"""
Aggregate a single table column
"""
for masked in (False, True):
tg = Table(T1, masked=masked).group_by('a')
tga = tg['c'].groups.aggregate(np.sum)
assert tga.pformat() == [' c ',
'----',
' 0.0',
' 6.0',
'22.0']
def test_table_filter():
"""
Table groups filtering
"""
def all_positive(table, key_colnames):
colnames = [name for name in table.colnames if name not in key_colnames]
for colname in colnames:
if np.any(table[colname] < 0):
return False
return True
# Negative value in 'a' column should not filter because it is a key col
t = Table.read([' a c d',
' -2 7.0 0',
' -2 5.0 1',
' 0 0.0 4',
' 1 3.0 5',
' 1 2.0 -6',
' 1 1.0 7',
' 3 3.0 5',
' 3 -2.0 6',
' 3 1.0 7',
], format='ascii')
tg = t.group_by('a')
t2 = tg.groups.filter(all_positive)
assert t2.groups[0].pformat() == [' a c d ',
'--- --- ---',
' -2 7.0 0',
' -2 5.0 1']
assert t2.groups[1].pformat() == [' a c d ',
'--- --- ---',
' 0 0.0 4']
def test_column_filter():
"""
Table groups filtering
"""
def all_positive(column):
if np.any(column < 0):
return False
return True
# Negative value in 'a' column should not filter because it is a key col
t = Table.read([' a c d',
' -2 7.0 0',
' -2 5.0 1',
' 0 0.0 4',
' 1 3.0 5',
' 1 2.0 -6',
' 1 1.0 7',
' 3 3.0 5',
' 3 -2.0 6',
' 3 1.0 7',
], format='ascii')
tg = t.group_by('a')
c2 = tg['c'].groups.filter(all_positive)
assert len(c2.groups) == 3
assert c2.groups[0].pformat() == [' c ', '---', '7.0', '5.0']
assert c2.groups[1].pformat() == [' c ', '---', '0.0']
assert c2.groups[2].pformat() == [' c ', '---', '3.0', '2.0', '1.0']
|