1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
|
# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
The astropy.time package provides functionality for manipulating times and
dates. Specific emphasis is placed on supporting time scales (e.g. UTC, TAI,
UT1) and time representations (e.g. JD, MJD, ISO 8601) that are used in
astronomy.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import copy
import operator
from datetime import datetime
from collections import defaultdict
import numpy as np
from .. import units as u, constants as const
from .. import _erfa as erfa
from ..units import UnitConversionError
from ..utils.decorators import lazyproperty
from ..utils import ShapedLikeNDArray
from ..utils.compat.misc import override__dir__
from ..utils.data_info import MixinInfo, data_info_factory
from ..utils.compat.numpy import broadcast_to
from ..extern import six
from ..extern.six.moves import zip
from .utils import day_frac
from .formats import (TIME_FORMATS, TIME_DELTA_FORMATS,
TimeJD, TimeUnique, TimeAstropyTime, TimeDatetime)
# Import TimeFromEpoch to avoid breaking code that followed the old example of
# making a custom timescale in the documentation.
from .formats import TimeFromEpoch # pylint: disable=W0611
__all__ = ['Time', 'TimeDelta', 'TIME_SCALES', 'TIME_DELTA_SCALES',
'ScaleValueError', 'OperandTypeError']
TIME_SCALES = ('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc')
MULTI_HOPS = {('tai', 'tcb'): ('tt', 'tdb'),
('tai', 'tcg'): ('tt',),
('tai', 'ut1'): ('utc',),
('tai', 'tdb'): ('tt',),
('tcb', 'tcg'): ('tdb', 'tt'),
('tcb', 'tt'): ('tdb',),
('tcb', 'ut1'): ('tdb', 'tt', 'tai', 'utc'),
('tcb', 'utc'): ('tdb', 'tt', 'tai'),
('tcg', 'tdb'): ('tt',),
('tcg', 'ut1'): ('tt', 'tai', 'utc'),
('tcg', 'utc'): ('tt', 'tai'),
('tdb', 'ut1'): ('tt', 'tai', 'utc'),
('tdb', 'utc'): ('tt', 'tai'),
('tt', 'ut1'): ('tai', 'utc'),
('tt', 'utc'): ('tai',),
}
GEOCENTRIC_SCALES = ('tai', 'tt', 'tcg')
BARYCENTRIC_SCALES = ('tcb', 'tdb')
ROTATIONAL_SCALES = ('ut1',)
TIME_DELTA_TYPES = dict((scale, scales)
for scales in (GEOCENTRIC_SCALES, BARYCENTRIC_SCALES,
ROTATIONAL_SCALES) for scale in scales)
TIME_DELTA_SCALES = TIME_DELTA_TYPES.keys()
# For time scale changes, we need L_G and L_B, which are stored in erfam.h as
# /* L_G = 1 - d(TT)/d(TCG) */
# define ERFA_ELG (6.969290134e-10)
# /* L_B = 1 - d(TDB)/d(TCB), and TDB (s) at TAI 1977/1/1.0 */
# define ERFA_ELB (1.550519768e-8)
# These are exposed in erfa as erfa.ELG and erfa.ELB.
# Implied: d(TT)/d(TCG) = 1-L_G
# and d(TCG)/d(TT) = 1/(1-L_G) = 1 + (1-(1-L_G))/(1-L_G) = 1 + L_G/(1-L_G)
# scale offsets as second = first + first * scale_offset[(first,second)]
SCALE_OFFSETS = {('tt', 'tai'): None,
('tai', 'tt'): None,
('tcg', 'tt'): -erfa.ELG,
('tt', 'tcg'): erfa.ELG / (1. - erfa.ELG),
('tcg', 'tai'): -erfa.ELG,
('tai', 'tcg'): erfa.ELG / (1. - erfa.ELG),
('tcb', 'tdb'): -erfa.ELB,
('tdb', 'tcb'): erfa.ELB / (1. - erfa.ELB)}
# triple-level dictionary, yay!
SIDEREAL_TIME_MODELS = {
'mean': {
'IAU2006': {'function': erfa.gmst06, 'scales': ('ut1', 'tt')},
'IAU2000': {'function': erfa.gmst00, 'scales': ('ut1', 'tt')},
'IAU1982': {'function': erfa.gmst82, 'scales': ('ut1',)}},
'apparent': {
'IAU2006A': {'function': erfa.gst06a, 'scales': ('ut1', 'tt')},
'IAU2000A': {'function': erfa.gst00a, 'scales': ('ut1', 'tt')},
'IAU2000B': {'function': erfa.gst00b, 'scales': ('ut1',)},
'IAU1994': {'function': erfa.gst94, 'scales': ('ut1',)}}}
class TimeInfo(MixinInfo):
"""
Container for meta information like name, description, format. This is
required when the object is used as a mixin column within a table, but can
be used as a general way to store meta information.
"""
attrs_from_parent = set(['unit']) # unit is read-only and None
_supports_indexing = True
_represent_as_dict_attrs = ('jd1', 'jd2', 'format', 'scale', 'precision',
'in_subfmt', 'out_subfmt', 'location',
'_delta_ut1_utc', '_delta_tdb_tt')
@property
def unit(self):
return None
info_summary_stats = staticmethod(
data_info_factory(names=MixinInfo._stats,
funcs=[getattr(np, stat) for stat in MixinInfo._stats]))
# When Time has mean, std, min, max methods:
# funcs = [lambda x: getattr(x, stat)() for stat_name in MixinInfo._stats])
def _construct_from_dict(self, map):
format = map.pop('format')
delta_ut1_utc = map.pop('_delta_ut1_utc', None)
delta_tdb_tt = map.pop('_delta_tdb_tt', None)
map['format'] = 'jd'
map['val'] = map.pop('jd1')
map['val2'] = map.pop('jd2')
out = self._parent_cls(**map)
out.format = format
if delta_ut1_utc is not None:
out._delta_ut1_utc = delta_ut1_utc
if delta_tdb_tt is not None:
out._delta_tdb_tt = delta_tdb_tt
return out
class TimeDeltaInfo(TimeInfo):
_represent_as_dict_attrs = ('jd1', 'jd2', 'format', 'scale')
def _construct_from_dict(self, map):
format = map.pop('format')
map['format'] = 'jd'
map['val'] = map.pop('jd1')
map['val2'] = map.pop('jd2')
out = self._parent_cls(**map)
out.format = format
return out
class Time(ShapedLikeNDArray):
"""
Represent and manipulate times and dates for astronomy.
A `Time` object is initialized with one or more times in the ``val``
argument. The input times in ``val`` must conform to the specified
``format`` and must correspond to the specified time ``scale``. The
optional ``val2`` time input should be supplied only for numeric input
formats (e.g. JD) where very high precision (better than 64-bit precision)
is required.
The allowed values for ``format`` can be listed with::
>>> list(Time.FORMATS)
['jd', 'mjd', 'decimalyear', 'unix', 'cxcsec', 'gps', 'plot_date',
'datetime', 'iso', 'isot', 'yday', 'fits', 'byear', 'jyear', 'byear_str',
'jyear_str']
Parameters
----------
val : sequence, str, number, or `~astropy.time.Time` object
Value(s) to initialize the time or times.
val2 : sequence, str, or number; optional
Value(s) to initialize the time or times.
format : str, optional
Format of input value(s)
scale : str, optional
Time scale of input value(s), must be one of the following:
('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc')
precision : int, optional
Digits of precision in string representation of time
in_subfmt : str, optional
Subformat for inputting string times
out_subfmt : str, optional
Subformat for outputting string times
location : `~astropy.coordinates.EarthLocation` or tuple, optional
If given as an tuple, it should be able to initialize an
an EarthLocation instance, i.e., either contain 3 items with units of
length for geocentric coordinates, or contain a longitude, latitude,
and an optional height for geodetic coordinates.
Can be a single location, or one for each input time.
copy : bool, optional
Make a copy of the input values
"""
SCALES = TIME_SCALES
"""List of time scales"""
FORMATS = TIME_FORMATS
"""Dict of time formats"""
# Make sure that reverse arithmetic (e.g., TimeDelta.__rmul__)
# gets called over the __mul__ of Numpy arrays.
__array_priority__ = 20000
# Declare that Time can be used as a Table column by defining the
# attribute where column attributes will be stored.
_astropy_column_attrs = None
def __new__(cls, val, val2=None, format=None, scale=None,
precision=None, in_subfmt=None, out_subfmt=None,
location=None, copy=False):
if isinstance(val, cls):
self = val.replicate(format=format, copy=copy)
else:
self = super(Time, cls).__new__(cls)
return self
def __getnewargs__(self):
return (self._time,)
def __init__(self, val, val2=None, format=None, scale=None,
precision=None, in_subfmt=None, out_subfmt=None,
location=None, copy=False):
if location is not None:
from ..coordinates import EarthLocation
if isinstance(location, EarthLocation):
self.location = location
else:
self.location = EarthLocation(*location)
else:
self.location = None
if isinstance(val, Time):
# Update _time formatting parameters if explicitly specified
if precision is not None:
self._time.precision = precision
if in_subfmt is not None:
self._time.in_subfmt = in_subfmt
if out_subfmt is not None:
self._time.out_subfmt = out_subfmt
if scale is not None:
self._set_scale(scale)
else:
self._init_from_vals(val, val2, format, scale, copy,
precision, in_subfmt, out_subfmt)
if self.location and (self.location.size > 1 and
self.location.shape != self.shape):
try:
# check the location can be broadcast to self's shape.
self.location = broadcast_to(self.location, self.shape,
subok=True)
except Exception:
raise ValueError('The location with shape {0} cannot be '
'broadcast against time with shape {1}. '
'Typically, either give a single location or '
'one for each time.'
.format(self.location.shape, self.shape))
def _init_from_vals(self, val, val2, format, scale, copy,
precision=None, in_subfmt=None, out_subfmt=None):
"""
Set the internal _format, scale, and _time attrs from user
inputs. This handles coercion into the correct shapes and
some basic input validation.
"""
if precision is None:
precision = 3
if in_subfmt is None:
in_subfmt = '*'
if out_subfmt is None:
out_subfmt = '*'
# Coerce val into an array
val = _make_array(val, copy)
# If val2 is not None, ensure consistency
if val2 is not None:
val2 = _make_array(val2, copy)
try:
np.broadcast(val, val2)
except ValueError:
raise ValueError('Input val and val2 have inconsistent shape; '
'they cannot be broadcast together.')
if scale is not None:
if not (isinstance(scale, six.string_types) and
scale.lower() in self.SCALES):
raise ScaleValueError("Scale {0} is not in the allowed scales "
"{1}".format(repr(scale),
sorted(self.SCALES)))
# Parse / convert input values into internal jd1, jd2 based on format
self._time = self._get_time_fmt(val, val2, format, scale,
precision, in_subfmt, out_subfmt)
self._format = self._time.name
def _get_time_fmt(self, val, val2, format, scale,
precision, in_subfmt, out_subfmt):
"""
Given the supplied val, val2, format and scale try to instantiate
the corresponding TimeFormat class to convert the input values into
the internal jd1 and jd2.
If format is `None` and the input is a string-type or object array then
guess available formats and stop when one matches.
"""
if format is None and val.dtype.kind in ('S', 'U', 'O'):
formats = [(name, cls) for name, cls in self.FORMATS.items()
if issubclass(cls, TimeUnique)]
err_msg = ('any of the formats where the format keyword is '
'optional {0}'.format([name for name, cls in formats]))
# AstropyTime is a pseudo-format that isn't in the TIME_FORMATS registry,
# but try to guess it at the end.
formats.append(('astropy_time', TimeAstropyTime))
elif not (isinstance(format, six.string_types) and
format.lower() in self.FORMATS):
if format is None:
raise ValueError("No time format was given, and the input is "
"not unique")
else:
raise ValueError("Format {0} is not one of the allowed "
"formats {1}".format(repr(format),
sorted(self.FORMATS)))
else:
formats = [(format, self.FORMATS[format])]
err_msg = 'the format class {0}'.format(format)
for format, FormatClass in formats:
try:
return FormatClass(val, val2, scale, precision, in_subfmt, out_subfmt)
except UnitConversionError:
raise
except (ValueError, TypeError):
pass
else:
raise ValueError('Input values did not match {0}'.format(err_msg))
@classmethod
def now(cls):
"""
Creates a new object corresponding to the instant in time this
method is called.
.. note::
"Now" is determined using the `~datetime.datetime.utcnow`
function, so its accuracy and precision is determined by that
function. Generally that means it is set by the accuracy of
your system clock.
Returns
-------
nowtime
A new `Time` object (or a subclass of `Time` if this is called from
such a subclass) at the current time.
"""
# call `utcnow` immediately to be sure it's ASAP
dtnow = datetime.utcnow()
return cls(val=dtnow, format='datetime', scale='utc')
info = TimeInfo()
@property
def format(self):
"""
Get or set time format.
The format defines the way times are represented when accessed via the
``.value`` attribute. By default it is the same as the format used for
initializing the `Time` instance, but it can be set to any other value
that could be used for initialization. These can be listed with::
>>> list(Time.FORMATS)
['jd', 'mjd', 'decimalyear', 'unix', 'cxcsec', 'gps', 'plot_date',
'datetime', 'iso', 'isot', 'yday', 'fits', 'byear', 'jyear', 'byear_str',
'jyear_str']
"""
return self._format
@format.setter
def format(self, format):
"""Set time format"""
if format not in self.FORMATS:
raise ValueError('format must be one of {0}'
.format(list(self.FORMATS)))
format_cls = self.FORMATS[format]
# If current output subformat is not in the new format then replace
# with default '*'
if hasattr(format_cls, 'subfmts'):
subfmt_names = [subfmt[0] for subfmt in format_cls.subfmts]
if self.out_subfmt not in subfmt_names:
self.out_subfmt = '*'
self._time = format_cls(self._time.jd1, self._time.jd2,
self._time._scale, self.precision,
in_subfmt=self.in_subfmt,
out_subfmt=self.out_subfmt,
from_jd=True)
self._format = format
def __repr__(self):
return ("<{0} object: scale='{1}' format='{2}' value={3}>"
.format(self.__class__.__name__, self.scale, self.format,
getattr(self, self.format)))
def __str__(self):
return str(getattr(self, self.format))
@property
def scale(self):
"""Time scale"""
return self._time.scale
def _set_scale(self, scale):
"""
This is the key routine that actually does time scale conversions.
This is not public and not connected to the read-only scale property.
"""
if scale == self.scale:
return
if scale not in self.SCALES:
raise ValueError("Scale {0} is not in the allowed scales {1}"
.format(repr(scale), sorted(self.SCALES)))
# Determine the chain of scale transformations to get from the current
# scale to the new scale. MULTI_HOPS contains a dict of all
# transformations (xforms) that require intermediate xforms.
# The MULTI_HOPS dict is keyed by (sys1, sys2) in alphabetical order.
xform = (self.scale, scale)
xform_sort = tuple(sorted(xform))
multi = MULTI_HOPS.get(xform_sort, ())
xforms = xform_sort[:1] + multi + xform_sort[-1:]
# If we made the reverse xform then reverse it now.
if xform_sort != xform:
xforms = tuple(reversed(xforms))
# Transform the jd1,2 pairs through the chain of scale xforms.
jd1, jd2 = self._time.jd1, self._time.jd2
for sys1, sys2 in zip(xforms[:-1], xforms[1:]):
# Some xforms require an additional delta_ argument that is
# provided through Time methods. These values may be supplied by
# the user or computed based on available approximations. The
# get_delta_ methods are available for only one combination of
# sys1, sys2 though the property applies for both xform directions.
args = [jd1, jd2]
for sys12 in ((sys1, sys2), (sys2, sys1)):
dt_method = '_get_delta_{0}_{1}'.format(*sys12)
try:
get_dt = getattr(self, dt_method)
except AttributeError:
pass
else:
args.append(get_dt(jd1, jd2))
break
conv_func = getattr(erfa, sys1 + sys2)
jd1, jd2 = conv_func(*args)
self._time = self.FORMATS[self.format](jd1, jd2, scale, self.precision,
self.in_subfmt, self.out_subfmt,
from_jd=True)
@property
def precision(self):
"""
Decimal precision when outputting seconds as floating point (int
value between 0 and 9 inclusive).
"""
return self._time.precision
@precision.setter
def precision(self, val):
if not isinstance(val, int) or val < 0 or val > 9:
raise ValueError('precision attribute must be an int between '
'0 and 9')
self._time.precision = val
del self.cache
@property
def in_subfmt(self):
"""
Unix wildcard pattern to select subformats for parsing string input
times.
"""
return self._time.in_subfmt
@in_subfmt.setter
def in_subfmt(self, val):
if not isinstance(val, six.string_types):
raise ValueError('in_subfmt attribute must be a string')
self._time.in_subfmt = val
del self.cache
@property
def out_subfmt(self):
"""
Unix wildcard pattern to select subformats for outputting times.
"""
return self._time.out_subfmt
@out_subfmt.setter
def out_subfmt(self, val):
if not isinstance(val, six.string_types):
raise ValueError('out_subfmt attribute must be a string')
self._time.out_subfmt = val
del self.cache
@property
def shape(self):
"""The shape of the time instances.
Like `~numpy.ndarray.shape`, can be set to a new shape by assigning a
tuple. Note that if different instances share some but not all
underlying data, setting the shape of one instance can make the other
instance unusable. Hence, it is strongly recommended to get new,
reshaped instances with the ``reshape`` method.
Raises
------
AttributeError
If the shape of the ``jd1``, ``jd2``, ``location``,
``delta_ut1_utc``, or ``delta_tdb_tt`` attributes cannot be changed
without the arrays being copied. For these cases, use the
`Time.reshape` method (which copies any arrays that cannot be
reshaped in-place).
"""
return self._time.jd1.shape
@shape.setter
def shape(self, shape):
# We have to keep track of arrays that were already reshaped,
# since we may have to return those to their original shape if a later
# shape-setting fails.
reshaped = []
oldshape = self.shape
for attr in ('jd1', 'jd2', '_delta_ut1_utc', '_delta_tdb_tt',
'location'):
val = getattr(self, attr, None)
if val is not None and val.size > 1:
try:
val.shape = shape
except AttributeError:
for val2 in reshaped:
val2.shape = oldshape
raise
else:
reshaped.append(val)
def _shaped_like_input(self, value):
return value if self._time.jd1.shape else value.item()
@property
def jd1(self):
"""
First of the two doubles that internally store time value(s) in JD.
"""
return self._shaped_like_input(self._time.jd1)
@property
def jd2(self):
"""
Second of the two doubles that internally store time value(s) in JD.
"""
return self._shaped_like_input(self._time.jd2)
@property
def value(self):
"""Time value(s) in current format"""
# The underlying way to get the time values for the current format is:
# self._shaped_like_input(self._time.to_value(parent=self))
# This is done in __getattr__. By calling getattr(self, self.format)
# the ``value`` attribute is cached.
return getattr(self, self.format)
def light_travel_time(self, skycoord, kind='barycentric', location=None, ephemeris=None):
"""Light travel time correction to the barycentre or heliocentre.
The frame transformations used to calculate the location of the solar
system barycentre and the heliocentre rely on the erfa routine epv00,
which is consistent with the JPL DE405 ephemeris to an accuracy of
11.2 km, corresponding to a light travel time of 4 microseconds.
The routine assumes the source(s) are at large distance, i.e., neglects
finite-distance effects.
Parameters
----------
skycoord : `~astropy.coordinates.SkyCoord`
The sky location to calculate the correction for.
kind : str, optional
``'barycentric'`` (default) or ``'heliocentric'``
location : `~astropy.coordinates.EarthLocation`, optional
The location of the observatory to calculate the correction for.
If no location is given, the ``location`` attribute of the Time
object is used
ephemeris : str, optional
Solar system ephemeris to use (e.g., 'builtin', 'jpl'). By default,
use the one set with ``astropy.coordinates.solar_system_ephemeris.set``.
For more information, see `~astropy.coordinates.solar_system_ephemeris`.
Returns
-------
time_offset : `~astropy.time.TimeDelta`
The time offset between the barycentre or Heliocentre and Earth,
in TDB seconds. Should be added to the original time to get the
time in the Solar system barycentre or the Heliocentre.
"""
if kind.lower() not in ('barycentric', 'heliocentric'):
raise ValueError("'kind' parameter must be one of 'heliocentric' "
"or 'barycentric'")
if location is None:
if self.location is None:
raise ValueError('An EarthLocation needs to be set or passed '
'in to calculate bary- or heliocentric '
'corrections')
location = self.location
from ..coordinates import (UnitSphericalRepresentation, CartesianRepresentation,
HCRS, ICRS, GCRS, solar_system_ephemeris)
# ensure sky location is ICRS compatible
if not skycoord.is_transformable_to(ICRS()):
raise ValueError("Given skycoord is not transformable to the ICRS")
# get location of observatory in ITRS coordinates at this Time
try:
itrs = location.get_itrs(obstime=self)
except Exception:
raise ValueError("Supplied location does not have a valid `get_itrs` method")
with solar_system_ephemeris.set(ephemeris):
if kind.lower() == 'heliocentric':
# convert to heliocentric coordinates, aligned with ICRS
cpos = itrs.transform_to(HCRS(obstime=self)).cartesian.xyz
else:
# first we need to convert to GCRS coordinates with the correct
# obstime, since ICRS coordinates have no frame time
gcrs_coo = itrs.transform_to(GCRS(obstime=self))
# convert to barycentric (BCRS) coordinates, aligned with ICRS
cpos = gcrs_coo.transform_to(ICRS()).cartesian.xyz
# get unit ICRS vector to star
spos = (skycoord.icrs.represent_as(UnitSphericalRepresentation).
represent_as(CartesianRepresentation).xyz)
# Move X,Y,Z to last dimension, to enable possible broadcasting below.
cpos = np.rollaxis(cpos, 0, cpos.ndim)
spos = np.rollaxis(spos, 0, spos.ndim)
# calculate light travel time correction
tcor_val = (spos * cpos).sum(axis=-1) / const.c
return TimeDelta(tcor_val, scale='tdb')
def sidereal_time(self, kind, longitude=None, model=None):
"""Calculate sidereal time.
Parameters
---------------
kind : str
``'mean'`` or ``'apparent'``, i.e., accounting for precession
only, or also for nutation.
longitude : `~astropy.units.Quantity`, `str`, or `None`; optional
The longitude on the Earth at which to compute the sidereal time.
Can be given as a `~astropy.units.Quantity` with angular units
(or an `~astropy.coordinates.Angle` or
`~astropy.coordinates.Longitude`), or as a name of an
observatory (currently, only ``'greenwich'`` is supported,
equivalent to 0 deg). If `None` (default), the ``lon`` attribute of
the Time object is used.
model : str or `None`; optional
Precession (and nutation) model to use. The available ones are:
- {0}: {1}
- {2}: {3}
If `None` (default), the last (most recent) one from the appropriate
list above is used.
Returns
-------
sidereal time : `~astropy.coordinates.Longitude`
Sidereal time as a quantity with units of hourangle
""" # docstring is formatted below
from ..coordinates import Longitude
if kind.lower() not in SIDEREAL_TIME_MODELS.keys():
raise ValueError('The kind of sidereal time has to be {0}'.format(
' or '.join(sorted(SIDEREAL_TIME_MODELS.keys()))))
available_models = SIDEREAL_TIME_MODELS[kind.lower()]
if model is None:
model = sorted(available_models.keys())[-1]
else:
if model.upper() not in available_models:
raise ValueError(
'Model {0} not implemented for {1} sidereal time; '
'available models are {2}'
.format(model, kind, sorted(available_models.keys())))
if longitude is None:
if self.location is None:
raise ValueError('No longitude is given but the location for '
'the Time object is not set.')
longitude = self.location.longitude
elif longitude == 'greenwich':
longitude = Longitude(0., u.degree,
wrap_angle=180.*u.degree)
else:
# sanity check on input
longitude = Longitude(longitude, u.degree,
wrap_angle=180.*u.degree)
gst = self._erfa_sidereal_time(available_models[model.upper()])
return Longitude(gst + longitude, u.hourangle)
if isinstance(sidereal_time.__doc__, six.string_types):
sidereal_time.__doc__ = sidereal_time.__doc__.format(
'apparent', sorted(SIDEREAL_TIME_MODELS['apparent'].keys()),
'mean', sorted(SIDEREAL_TIME_MODELS['mean'].keys()))
def _erfa_sidereal_time(self, model):
"""Calculate a sidereal time using a IAU precession/nutation model."""
from ..coordinates import Longitude
erfa_function = model['function']
erfa_parameters = [getattr(getattr(self, scale)._time, jd_part)
for scale in model['scales']
for jd_part in ('jd1', 'jd2')]
sidereal_time = erfa_function(*erfa_parameters)
return Longitude(sidereal_time, u.radian).to(u.hourangle)
def copy(self, format=None):
"""
Return a fully independent copy the Time object, optionally changing
the format.
If ``format`` is supplied then the time format of the returned Time
object will be set accordingly, otherwise it will be unchanged from the
original.
In this method a full copy of the internal time arrays will be made.
The internal time arrays are normally not changeable by the user so in
most cases the ``replicate()`` method should be used.
Parameters
----------
format : str, optional
Time format of the copy.
Returns
-------
tm : Time object
Copy of this object
"""
return self._apply('copy', format=format)
def replicate(self, format=None, copy=False):
"""
Return a replica of the Time object, optionally changing the format.
If ``format`` is supplied then the time format of the returned Time
object will be set accordingly, otherwise it will be unchanged from the
original.
If ``copy`` is set to `True` then a full copy of the internal time arrays
will be made. By default the replica will use a reference to the
original arrays when possible to save memory. The internal time arrays
are normally not changeable by the user so in most cases it should not
be necessary to set ``copy`` to `True`.
The convenience method copy() is available in which ``copy`` is `True`
by default.
Parameters
----------
format : str, optional
Time format of the replica.
copy : bool, optional
Return a true copy instead of using references where possible.
Returns
-------
tm : Time object
Replica of this object
"""
return self._apply('copy' if copy else 'replicate', format=format)
def _apply(self, method, *args, **kwargs):
"""Create a new time object, possibly applying a method to the arrays.
Parameters
----------
method : str or callable
If string, can be 'replicate' or the name of a relevant
`~numpy.ndarray` method. In the former case, a new time instance
with unchanged internal data is created, while in the latter the
method is applied to the internal ``jd1`` and ``jd2`` arrays, as
well as to possible ``location``, ``_delta_ut1_utc``, and
``_delta_tdb_tt`` arrays.
If a callable, it is directly applied to the above arrays.
Examples: 'copy', '__getitem__', 'reshape', `~numpy.broadcast_to`.
args : tuple
Any positional arguments for ``method``.
kwargs : dict
Any keyword arguments for ``method``. If the ``format`` keyword
argument is present, this will be used as the Time format of the
replica.
Examples
--------
Some ways this is used internally::
copy : ``_apply('copy')``
replicate : ``_apply('replicate')``
reshape : ``_apply('reshape', new_shape)``
index or slice : ``_apply('__getitem__', item)``
broadcast : ``_apply(np.broadcast, shape=new_shape)``
"""
new_format = kwargs.pop('format', None)
if new_format is None:
new_format = self.format
if callable(method):
apply_method = lambda array: method(array, *args, **kwargs)
else:
if method == 'replicate':
apply_method = None
else:
apply_method = operator.methodcaller(method, *args, **kwargs)
jd1, jd2 = self._time.jd1, self._time.jd2
if apply_method:
jd1 = apply_method(jd1)
jd2 = apply_method(jd2)
tm = super(Time, self.__class__).__new__(self.__class__)
tm._time = TimeJD(jd1, jd2, self.scale, self.precision,
self.in_subfmt, self.out_subfmt, from_jd=True)
# Optional ndarray attributes.
for attr in ('_delta_ut1_utc', '_delta_tdb_tt', 'location',
'precision', 'in_subfmt', 'out_subfmt'):
try:
val = getattr(self, attr)
except AttributeError:
continue
if apply_method:
# Apply the method to any value arrays (though skip if there is
# only a single element and the method would return a view,
# since in that case nothing would change).
if getattr(val, 'size', 1) > 1:
val = apply_method(val)
elif method == 'copy' or method == 'flatten':
# flatten should copy also for a single element array, but
# we cannot use it directly for array scalars, since it
# always returns a one-dimensional array. So, just copy.
val = copy.copy(val)
setattr(tm, attr, val)
# Copy other 'info' attr only if it has actually been defined.
# See PR #3898 for further explanation and justification, along
# with Quantity.__array_finalize__
if 'info' in self.__dict__:
tm.info = self.info
# Make the new internal _time object corresponding to the format
# in the copy. If the format is unchanged this process is lightweight
# and does not create any new arrays.
if new_format not in tm.FORMATS:
raise ValueError('format must be one of {0}'
.format(list(tm.FORMATS)))
NewFormat = tm.FORMATS[new_format]
tm._time = NewFormat(tm._time.jd1, tm._time.jd2,
tm._time._scale, tm.precision,
tm.in_subfmt, tm.out_subfmt,
from_jd=True)
tm._format = new_format
return tm
def __copy__(self):
"""
Overrides the default behavior of the `copy.copy` function in
the python stdlib to behave like `Time.copy`. Does *not* make a
copy of the JD arrays - only copies by reference.
"""
return self.replicate()
def __deepcopy__(self, memo):
"""
Overrides the default behavior of the `copy.deepcopy` function
in the python stdlib to behave like `Time.copy`. Does make a
copy of the JD arrays.
"""
return self.copy()
def _advanced_index(self, indices, axis=None, keepdims=False):
"""Turn argmin, argmax output into an advanced index.
Argmin, argmax output contains indices along a given axis in an array
shaped like the other dimensions. To use this to get values at the
correct location, a list is constructed in which the other axes are
indexed sequentially. For ``keepdims`` is ``True``, the net result is
the same as constructing an index grid with ``np.ogrid`` and then
replacing the ``axis`` item with ``indices`` with its shaped expanded
at ``axis``. For ``keepdims`` is ``False``, the result is the same but
with the ``axis`` dimension removed from all list entries.
For ``axis`` is ``None``, this calls :func:`~numpy.unravel_index`.
Parameters
----------
indices : array
Output of argmin or argmax.
axis : int or None
axis along which argmin or argmax was used.
keepdims : bool
Whether to construct indices that keep or remove the axis along
which argmin or argmax was used. Default: ``False``.
Returns
-------
advanced_index : list of arrays
Suitable for use as an advanced index.
"""
if axis is None:
return np.unravel_index(indices, self.shape)
ndim = self.ndim
if axis < 0:
axis = axis + ndim
if keepdims and indices.ndim < self.ndim:
indices = np.expand_dims(indices, axis)
return [(indices if i == axis else np.arange(s).reshape(
(1,)*(i if keepdims or i < axis else i-1) + (s,) +
(1,)*(ndim-i-(1 if keepdims or i > axis else 2))))
for i, s in enumerate(self.shape)]
def argmin(self, axis=None, out=None):
"""Return indices of the minimum values along the given axis.
This is similar to :meth:`~numpy.ndarray.argmin`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used. See :func:`~numpy.argmin` for detailed documentation.
"""
# first get the minimum at normal precision.
jd = self.jd1 + self.jd2
approx = jd.min(axis, keepdims=True)
# Approx is very close to the true minimum, and by subtracting it at
# full precision, all numbers near 0 can be represented correctly,
# so we can be sure we get the true minimum.
# The below is effectively what would be done for
# dt = (self - self.__class__(approx, format='jd')).jd
# which translates to:
# approx_jd1, approx_jd2 = day_frac(approx, 0.)
# dt = (self.jd1 - approx_jd1) + (self.jd2 - approx_jd2)
dt = (self.jd1 - approx) + self.jd2
return dt.argmin(axis, out)
def argmax(self, axis=None, out=None):
"""Return indices of the maximum values along the given axis.
This is similar to :meth:`~numpy.ndarray.argmax`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used. See :func:`~numpy.argmax` for detailed documentation.
"""
# For procedure, see comment on argmin.
jd = self.jd1 + self.jd2
approx = jd.max(axis, keepdims=True)
dt = (self.jd1 - approx) + self.jd2
return dt.argmax(axis, out)
def argsort(self, axis=-1):
"""Returns the indices that would sort the time array.
This is similar to :meth:`~numpy.ndarray.argsort`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used, and that corresponding attributes are copied. Internally,
it uses :func:`~numpy.lexsort`, and hence no sort method can be chosen.
"""
jd_approx = self.jd
jd_remainder = (self - self.__class__(jd_approx, format='jd')).jd
if axis is None:
return np.lexsort((jd_remainder.ravel(), jd_approx.ravel()))
else:
return np.lexsort(keys=(jd_remainder, jd_approx), axis=axis)
def min(self, axis=None, out=None, keepdims=False):
"""Minimum along a given axis.
This is similar to :meth:`~numpy.ndarray.min`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used, and that corresponding attributes are copied.
Note that the ``out`` argument is present only for compatibility with
``np.min``; since `Time` instances are immutable, it is not possible
to have an actual ``out`` to store the result in.
"""
if out is not None:
raise ValueError("Since `Time` instances are immutable, ``out`` "
"cannot be set to anything but ``None``.")
return self[self._advanced_index(self.argmin(axis), axis, keepdims)]
def max(self, axis=None, out=None, keepdims=False):
"""Maximum along a given axis.
This is similar to :meth:`~numpy.ndarray.max`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used, and that corresponding attributes are copied.
Note that the ``out`` argument is present only for compatibility with
``np.max``; since `Time` instances are immutable, it is not possible
to have an actual ``out`` to store the result in.
"""
if out is not None:
raise ValueError("Since `Time` instances are immutable, ``out`` "
"cannot be set to anything but ``None``.")
return self[self._advanced_index(self.argmax(axis), axis, keepdims)]
def ptp(self, axis=None, out=None, keepdims=False):
"""Peak to peak (maximum - minimum) along a given axis.
This is similar to :meth:`~numpy.ndarray.ptp`, but adapted to ensure
that the full precision given by the two doubles ``jd1`` and ``jd2``
is used.
Note that the ``out`` argument is present only for compatibility with
`~numpy.ptp`; since `Time` instances are immutable, it is not possible
to have an actual ``out`` to store the result in.
"""
if out is not None:
raise ValueError("Since `Time` instances are immutable, ``out`` "
"cannot be set to anything but ``None``.")
return (self.max(axis, keepdims=keepdims) -
self.min(axis, keepdims=keepdims))
def sort(self, axis=-1):
"""Return a copy sorted along the specified axis.
This is similar to :meth:`~numpy.ndarray.sort`, but internally uses
indexing with :func:`~numpy.lexsort` to ensure that the full precision
given by the two doubles ``jd1`` and ``jd2`` is kept, and that
corresponding attributes are properly sorted and copied as well.
Parameters
----------
axis : int or None
Axis to be sorted. If ``None``, the flattened array is sorted.
By default, sort over the last axis.
"""
return self[self._advanced_index(self.argsort(axis), axis,
keepdims=True)]
@lazyproperty
def cache(self):
"""
Return the cache associated with this instance.
"""
return defaultdict(dict)
def __getattr__(self, attr):
"""
Get dynamic attributes to output format or do timescale conversion.
"""
if attr in self.SCALES and self.scale is not None:
cache = self.cache['scale']
if attr not in cache:
if attr == self.scale:
tm = self
else:
tm = self.replicate()
tm._set_scale(attr)
cache[attr] = tm
return cache[attr]
elif attr in self.FORMATS:
cache = self.cache['format']
if attr not in cache:
if attr == self.format:
tm = self
else:
tm = self.replicate(format=attr)
value = tm._shaped_like_input(tm._time.to_value(parent=tm))
cache[attr] = value
return cache[attr]
elif attr in TIME_SCALES: # allowed ones done above (self.SCALES)
if self.scale is None:
raise ScaleValueError("Cannot convert TimeDelta with "
"undefined scale to any defined scale.")
else:
raise ScaleValueError("Cannot convert {0} with scale "
"'{1}' to scale '{2}'"
.format(self.__class__.__name__,
self.scale, attr))
else:
# Should raise AttributeError
return self.__getattribute__(attr)
@override__dir__
def __dir__(self):
result = set(self.SCALES)
result.update(self.FORMATS)
return result
def _match_shape(self, val):
"""
Ensure that `val` is matched to length of self. If val has length 1
then broadcast, otherwise cast to double and make sure shape matches.
"""
val = _make_array(val, copy=True) # be conservative and copy
if val.size > 1 and val.shape != self.shape:
try:
# check the value can be broadcast to the shape of self.
val = broadcast_to(val, self.shape, subok=True)
except Exception:
raise ValueError('Attribute shape must match or be '
'broadcastable to that of Time object. '
'Typically, give either a single value or '
'one for each time.')
return val
def get_delta_ut1_utc(self, iers_table=None, return_status=False):
"""Find UT1 - UTC differences by interpolating in IERS Table.
Parameters
----------
iers_table : ``astropy.utils.iers.IERS`` table, optional
Table containing UT1-UTC differences from IERS Bulletins A
and/or B. If `None`, use default version (see
``astropy.utils.iers``)
return_status : bool
Whether to return status values. If `False` (default), iers
raises `IndexError` if any time is out of the range
covered by the IERS table.
Returns
-------
ut1_utc : float or float array
UT1-UTC, interpolated in IERS Table
status : int or int array
Status values (if ``return_status=`True```)::
``astropy.utils.iers.FROM_IERS_B``
``astropy.utils.iers.FROM_IERS_A``
``astropy.utils.iers.FROM_IERS_A_PREDICTION``
``astropy.utils.iers.TIME_BEFORE_IERS_RANGE``
``astropy.utils.iers.TIME_BEYOND_IERS_RANGE``
Notes
-----
In normal usage, UT1-UTC differences are calculated automatically
on the first instance ut1 is needed.
Examples
--------
To check in code whether any times are before the IERS table range::
>>> from astropy.utils.iers import TIME_BEFORE_IERS_RANGE
>>> t = Time(['1961-01-01', '2000-01-01'], scale='utc')
>>> delta, status = t.get_delta_ut1_utc(return_status=True)
>>> status == TIME_BEFORE_IERS_RANGE
array([ True, False], dtype=bool)
"""
if iers_table is None:
from ..utils.iers import IERS
iers_table = IERS.open()
return iers_table.ut1_utc(self.utc, return_status=return_status)
# Property for ERFA DUT arg = UT1 - UTC
def _get_delta_ut1_utc(self, jd1=None, jd2=None):
"""
Get ERFA DUT arg = UT1 - UTC. This getter takes optional jd1 and
jd2 args because it gets called that way when converting time scales.
If delta_ut1_utc is not yet set, this will interpolate them from the
the IERS table.
"""
# Sec. 4.3.1: the arg DUT is the quantity delta_UT1 = UT1 - UTC in
# seconds. It is obtained from tables published by the IERS.
if not hasattr(self, '_delta_ut1_utc'):
from ..utils.iers import IERS_Auto
iers_table = IERS_Auto.open()
# jd1, jd2 are normally set (see above), except if delta_ut1_utc
# is access directly; ensure we behave as expected for that case
if jd1 is None:
self_utc = self.utc
jd1, jd2 = self_utc.jd1, self_utc.jd2
scale = 'utc'
else:
scale = self.scale
# interpolate UT1-UTC in IERS table
delta = iers_table.ut1_utc(jd1, jd2)
# if we interpolated using UT1 jds, we may be off by one
# second near leap seconds (and very slightly off elsewhere)
if scale == 'ut1':
# calculate UTC using the offset we got; the ERFA routine
# is tolerant of leap seconds, so will do this right
jd1_utc, jd2_utc = erfa.ut1utc(jd1, jd2, delta)
# calculate a better estimate using the nearly correct UTC
delta = iers_table.ut1_utc(jd1_utc, jd2_utc)
self._set_delta_ut1_utc(delta)
return self._delta_ut1_utc
def _set_delta_ut1_utc(self, val):
val = self._match_shape(val)
if hasattr(val, 'to'): # Matches Quantity but also TimeDelta.
val = val.to(u.second).value
self._delta_ut1_utc = val
del self.cache
# Note can't use @property because _get_delta_tdb_tt is explicitly
# called with the optional jd1 and jd2 args.
delta_ut1_utc = property(_get_delta_ut1_utc, _set_delta_ut1_utc)
"""UT1 - UTC time scale offset"""
# Property for ERFA DTR arg = TDB - TT
def _get_delta_tdb_tt(self, jd1=None, jd2=None):
if not hasattr(self, '_delta_tdb_tt'):
# If jd1 and jd2 are not provided (which is the case for property
# attribute access) then require that the time scale is TT or TDB.
# Otherwise the computations here are not correct.
if jd1 is None or jd2 is None:
if self.scale not in ('tt', 'tdb'):
raise ValueError('Accessing the delta_tdb_tt attribute '
'is only possible for TT or TDB time '
'scales')
else:
jd1 = self._time.jd1
jd2 = self._time.jd2
# First go from the current input time (which is either
# TDB or TT) to an approximate UT1. Since TT and TDB are
# pretty close (few msec?), assume TT. Similarly, since the
# UT1 terms are very small, use UTC instead of UT1.
njd1, njd2 = erfa.tttai(jd1, jd2)
njd1, njd2 = erfa.taiutc(njd1, njd2)
# subtract 0.5, so UT is fraction of the day from midnight
ut = day_frac(njd1 - 0.5, njd2)[1]
if self.location is None:
from ..coordinates import EarthLocation
location = EarthLocation.from_geodetic(0., 0., 0.)
else:
location = self.location
# Geodetic params needed for d_tdb_tt()
lon = location.longitude
rxy = np.hypot(location.x, location.y)
z = location.z
self._delta_tdb_tt = erfa.dtdb(
jd1, jd2, ut, lon.to(u.radian).value,
rxy.to(u.km).value, z.to(u.km).value)
return self._delta_tdb_tt
def _set_delta_tdb_tt(self, val):
val = self._match_shape(val)
if hasattr(val, 'to'): # Matches Quantity but also TimeDelta.
val = val.to(u.second).value
self._delta_tdb_tt = val
del self.cache
# Note can't use @property because _get_delta_tdb_tt is explicitly
# called with the optional jd1 and jd2 args.
delta_tdb_tt = property(_get_delta_tdb_tt, _set_delta_tdb_tt)
"""TDB - TT time scale offset"""
def __sub__(self, other):
if not isinstance(other, Time):
try:
other = TimeDelta(other)
except Exception:
raise OperandTypeError(self, other, '-')
# Tdelta - something is dealt with in TimeDelta, so we have
# T - Tdelta = T
# T - T = Tdelta
other_is_delta = isinstance(other, TimeDelta)
# we need a constant scale to calculate, which is guaranteed for
# TimeDelta, but not for Time (which can be UTC)
if other_is_delta: # T - Tdelta
out = self.replicate()
if self.scale in other.SCALES:
if other.scale not in (out.scale, None):
other = getattr(other, out.scale)
else:
out._set_scale(other.scale if other.scale is not None
else 'tai')
# remove attributes that are invalidated by changing time
for attr in ('_delta_ut1_utc', '_delta_tdb_tt'):
if hasattr(out, attr):
delattr(out, attr)
else: # T - T
self_time = (self._time if self.scale in TIME_DELTA_SCALES
else self.tai._time)
# set up TimeDelta, subtraction to be done shortly
out = TimeDelta(self_time.jd1, self_time.jd2, format='jd',
scale=self_time.scale)
if other.scale != out.scale:
other = getattr(other, out.scale)
jd1 = out._time.jd1 - other._time.jd1
jd2 = out._time.jd2 - other._time.jd2
out._time.jd1, out._time.jd2 = day_frac(jd1, jd2)
if other_is_delta:
# Go back to left-side scale if needed
out._set_scale(self.scale)
return out
def __add__(self, other):
if not isinstance(other, Time):
try:
other = TimeDelta(other)
except Exception:
raise OperandTypeError(self, other, '+')
# Tdelta + something is dealt with in TimeDelta, so we have
# T + Tdelta = T
# T + T = error
if not isinstance(other, TimeDelta):
raise OperandTypeError(self, other, '+')
# ideally, we calculate in the scale of the Time item, since that is
# what we want the output in, but this may not be possible, since
# TimeDelta cannot be converted arbitrarily
out = self.replicate()
if self.scale in other.SCALES:
if other.scale not in (out.scale, None):
other = getattr(other, out.scale)
else:
out._set_scale(other.scale if other.scale is not None else 'tai')
# remove attributes that are invalidated by changing time
for attr in ('_delta_ut1_utc', '_delta_tdb_tt'):
if hasattr(out, attr):
delattr(out, attr)
jd1 = out._time.jd1 + other._time.jd1
jd2 = out._time.jd2 + other._time.jd2
out._time.jd1, out._time.jd2 = day_frac(jd1, jd2)
# Go back to left-side scale if needed
out._set_scale(self.scale)
return out
def __radd__(self, other):
return self.__add__(other)
def __rsub__(self, other):
out = self.__sub__(other)
return -out
def _time_difference(self, other, op=None):
"""If other is of same class as self, return difference in self.scale.
Otherwise, raise OperandTypeError.
"""
if other.__class__ is not self.__class__:
try:
other = self.__class__(other, scale=self.scale)
except Exception:
raise OperandTypeError(self, other, op)
if(self.scale is not None and self.scale not in other.SCALES or
other.scale is not None and other.scale not in self.SCALES):
raise TypeError("Cannot compare TimeDelta instances with scales "
"'{0}' and '{1}'".format(self.scale, other.scale))
if self.scale is not None and other.scale is not None:
other = getattr(other, self.scale)
return (self.jd1 - other.jd1) + (self.jd2 - other.jd2)
def __lt__(self, other):
return self._time_difference(other, '<') < 0.
def __le__(self, other):
return self._time_difference(other, '<=') <= 0.
def __eq__(self, other):
"""
If other is an incompatible object for comparison, return `False`.
Otherwise, return `True` if the time difference between self and
other is zero.
"""
try:
diff = self._time_difference(other)
except OperandTypeError:
return False
return diff == 0.
def __ne__(self, other):
"""
If other is an incompatible object for comparison, return `True`.
Otherwise, return `False` if the time difference between self and
other is zero.
"""
try:
diff = self._time_difference(other)
except OperandTypeError:
return True
return diff != 0.
def __gt__(self, other):
return self._time_difference(other, '>') > 0.
def __ge__(self, other):
return self._time_difference(other, '>=') >= 0.
def to_datetime(self, timezone=None):
tm = self.replicate(format='datetime')
return tm._shaped_like_input(tm._time.to_value(timezone))
to_datetime.__doc__ = TimeDatetime.to_value.__doc__
class TimeDelta(Time):
"""
Represent the time difference between two times.
A TimeDelta object is initialized with one or more times in the ``val``
argument. The input times in ``val`` must conform to the specified
``format``. The optional ``val2`` time input should be supplied only for
numeric input formats (e.g. JD) where very high precision (better than
64-bit precision) is required.
The allowed values for ``format`` can be listed with::
>>> list(TimeDelta.FORMATS)
['sec', 'jd']
Note that for time differences, the scale can be among three groups:
geocentric ('tai', 'tt', 'tcg'), barycentric ('tcb', 'tdb'), and rotational
('ut1'). Within each of these, the scales for time differences are the
same. Conversion between geocentric and barycentric is possible, as there
is only a scale factor change, but one cannot convert to or from 'ut1', as
this requires knowledge of the actual times, not just their difference. For
a similar reason, 'utc' is not a valid scale for a time difference: a UTC
day is not always 86400 seconds.
Parameters
----------
val : numpy ndarray, list, str, number, or `~astropy.time.TimeDelta` object
Data to initialize table.
val2 : numpy ndarray, list, str, or number; optional
Data to initialize table.
format : str, optional
Format of input value(s)
scale : str, optional
Time scale of input value(s), must be one of the following values:
('tdb', 'tt', 'ut1', 'tcg', 'tcb', 'tai'). If not given (or
``None``), the scale is arbitrary; when added or subtracted from a
``Time`` instance, it will be used without conversion.
copy : bool, optional
Make a copy of the input values
"""
SCALES = TIME_DELTA_SCALES
"""List of time delta scales."""
FORMATS = TIME_DELTA_FORMATS
"""Dict of time delta formats."""
info = TimeDeltaInfo()
def __init__(self, val, val2=None, format=None, scale=None, copy=False):
if isinstance(val, TimeDelta):
if scale is not None:
self._set_scale(scale)
else:
if format is None:
try:
val = val.to(u.day)
if val2 is not None:
val2 = val2.to(u.day)
except Exception:
raise ValueError('Only Quantities with Time units can '
'be used to initiate {0} instances .'
.format(self.__class__.__name__))
format = 'jd'
self._init_from_vals(val, val2, format, scale, copy)
if scale is not None:
self.SCALES = TIME_DELTA_TYPES[scale]
def replicate(self, *args, **kwargs):
out = super(TimeDelta, self).replicate(*args, **kwargs)
out.SCALES = self.SCALES
return out
def _set_scale(self, scale):
"""
This is the key routine that actually does time scale conversions.
This is not public and not connected to the read-only scale property.
"""
if scale == self.scale:
return
if scale not in self.SCALES:
raise ValueError("Scale {0} is not in the allowed scales {1}"
.format(repr(scale), sorted(self.SCALES)))
# For TimeDelta, there can only be a change in scale factor,
# which is written as time2 - time1 = scale_offset * time1
scale_offset = SCALE_OFFSETS[(self.scale, scale)]
if scale_offset is None:
self._time.scale = scale
else:
jd1, jd2 = self._time.jd1, self._time.jd2
offset1, offset2 = day_frac(jd1, jd2, factor=scale_offset)
self._time = self.FORMATS[self.format](
jd1 + offset1, jd2 + offset2, scale,
self.precision, self.in_subfmt,
self.out_subfmt, from_jd=True)
def __add__(self, other):
# only deal with TimeDelta + TimeDelta
if isinstance(other, Time):
if not isinstance(other, TimeDelta):
return other.__add__(self)
else:
try:
other = TimeDelta(other)
except Exception:
raise OperandTypeError(self, other, '+')
# the scales should be compatible (e.g., cannot convert TDB to TAI)
if(self.scale is not None and self.scale not in other.SCALES or
other.scale is not None and other.scale not in self.SCALES):
raise TypeError("Cannot add TimeDelta instances with scales "
"'{0}' and '{1}'".format(self.scale, other.scale))
# adjust the scale of other if the scale of self is set (or no scales)
if self.scale is not None or other.scale is None:
out = self.replicate()
if other.scale is not None:
other = getattr(other, self.scale)
else:
out = other.replicate()
jd1 = self._time.jd1 + other._time.jd1
jd2 = self._time.jd2 + other._time.jd2
out._time.jd1, out._time.jd2 = day_frac(jd1, jd2)
return out
def __sub__(self, other):
# only deal with TimeDelta - TimeDelta
if isinstance(other, Time):
if not isinstance(other, TimeDelta):
raise OperandTypeError(self, other, '-')
else:
try:
other = TimeDelta(other)
except Exception:
raise OperandTypeError(self, other, '-')
# the scales should be compatible (e.g., cannot convert TDB to TAI)
if(self.scale is not None and self.scale not in other.SCALES or
other.scale is not None and other.scale not in self.SCALES):
raise TypeError("Cannot subtract TimeDelta instances with scales "
"'{0}' and '{1}'".format(self.scale, other.scale))
# adjust the scale of other if the scale of self is set (or no scales)
if self.scale is not None or other.scale is None:
out = self.replicate()
if other.scale is not None:
other = getattr(other, self.scale)
else:
out = other.replicate()
jd1 = self._time.jd1 - other._time.jd1
jd2 = self._time.jd2 - other._time.jd2
out._time.jd1, out._time.jd2 = day_frac(jd1, jd2)
return out
def __neg__(self):
"""Negation of a `TimeDelta` object."""
new = self.copy()
new._time.jd1 = -self._time.jd1
new._time.jd2 = -self._time.jd2
return new
def __abs__(self):
"""Absolute value of a `TimeDelta` object."""
jd1, jd2 = self._time.jd1, self._time.jd2
negative = jd1 + jd2 < 0
new = self.copy()
new._time.jd1 = np.where(negative, -jd1, jd1)
new._time.jd2 = np.where(negative, -jd2, jd2)
return new
def __mul__(self, other):
"""Multiplication of `TimeDelta` objects by numbers/arrays."""
# check needed since otherwise the self.jd1 * other multiplication
# would enter here again (via __rmul__)
if isinstance(other, Time):
raise OperandTypeError(self, other, '*')
try: # convert to straight float if dimensionless quantity
other = other.to(1)
except Exception:
pass
try:
jd1, jd2 = day_frac(self.jd1, self.jd2, factor=other)
out = TimeDelta(jd1, jd2, format='jd', scale=self.scale)
except Exception as err: # try downgrading self to a quantity
try:
return self.to(u.day) * other
except Exception:
raise err
if self.format != 'jd':
out = out.replicate(format=self.format)
return out
def __rmul__(self, other):
"""Multiplication of numbers/arrays with `TimeDelta` objects."""
return self.__mul__(other)
def __div__(self, other):
"""Division of `TimeDelta` objects by numbers/arrays."""
return self.__truediv__(other)
def __rdiv__(self, other):
"""Division by `TimeDelta` objects of numbers/arrays."""
return self.__rtruediv__(other)
def __truediv__(self, other):
"""Division of `TimeDelta` objects by numbers/arrays."""
# cannot do __mul__(1./other) as that looses precision
try:
other = other.to(1)
except Exception:
pass
try: # convert to straight float if dimensionless quantity
jd1, jd2 = day_frac(self.jd1, self.jd2, divisor=other)
out = TimeDelta(jd1, jd2, format='jd', scale=self.scale)
except Exception as err: # try downgrading self to a quantity
try:
return self.to(u.day) / other
except Exception:
raise err
if self.format != 'jd':
out = out.replicate(format=self.format)
return out
def __rtruediv__(self, other):
"""Division by `TimeDelta` objects of numbers/arrays."""
return other / self.to(u.day)
def to(self, *args, **kwargs):
return u.Quantity(self._time.jd1 + self._time.jd2,
u.day).to(*args, **kwargs)
class ScaleValueError(Exception):
pass
def _make_array(val, copy=False):
"""
Take ``val`` and convert/reshape to an array. If ``copy`` is `True`
then copy input values.
Returns
-------
val : ndarray
Array version of ``val``.
"""
val = np.array(val, copy=copy, subok=True)
# Allow only float64, string or object arrays as input
# (object is for datetime, maybe add more specific test later?)
# This also ensures the right byteorder for float64 (closes #2942).
if not (val.dtype == np.float64 or val.dtype.kind in 'OSUa'):
val = np.asanyarray(val, dtype=np.float64)
return val
class OperandTypeError(TypeError):
def __init__(self, left, right, op=None):
op_string = '' if op is None else ' for {0}'.format(op)
super(OperandTypeError, self).__init__(
"Unsupported operand type(s){0}: "
"'{1}' and '{2}'".format(op_string,
left.__class__.__name__,
right.__class__.__name__))
|