1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Miscellaneous utilities for `astropy.units`.
None of the functions in the module are meant for use outside of the
package.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numbers
import io
import re
from fractions import Fraction
import numpy as np
from numpy import finfo
from ..extern import six
_float_finfo = finfo(float)
# take float here to ensure comparison with another float is fast
# give a little margin since often multiple calculations happened
_JUST_BELOW_UNITY = float(1.-4.*_float_finfo.epsneg)
_JUST_ABOVE_UNITY = float(1.+4.*_float_finfo.eps)
def _get_first_sentence(s):
"""
Get the first sentence from a string and remove any carriage
returns.
"""
x = re.match(r".*?\S\.\s", s)
if x is not None:
s = x.group(0)
return s.replace('\n', ' ')
def _iter_unit_summary(namespace):
"""
Generates the ``(unit, doc, represents, aliases, prefixes)``
tuple used to format the unit summary docs in `generate_unit_summary`.
"""
from . import core
# Get all of the units, and keep track of which ones have SI
# prefixes
units = []
has_prefixes = set()
for key, val in six.iteritems(namespace):
# Skip non-unit items
if not isinstance(val, core.UnitBase):
continue
# Skip aliases
if key != val.name:
continue
if isinstance(val, core.PrefixUnit):
# This will return the root unit that is scaled by the prefix
# attached to it
has_prefixes.add(val._represents.bases[0].name)
else:
units.append(val)
# Sort alphabetically, case insensitive
units.sort(key=lambda x: x.name.lower())
for unit in units:
doc = _get_first_sentence(unit.__doc__).strip()
represents = ''
if isinstance(unit, core.Unit):
represents = ":math:`{0}`".format(
unit._represents.to_string('latex')[1:-1])
aliases = ', '.join('``{0}``'.format(x) for x in unit.aliases)
yield (unit, doc, represents, aliases, unit.name in has_prefixes)
def generate_unit_summary(namespace):
"""
Generates a summary of units from a given namespace. This is used
to generate the docstring for the modules that define the actual
units.
Parameters
----------
namespace : dict
A namespace containing units.
Returns
-------
docstring : str
A docstring containing a summary table of the units.
"""
docstring = io.StringIO()
docstring.write("""
.. list-table:: Available Units
:header-rows: 1
:widths: 10 20 20 20 1
* - Unit
- Description
- Represents
- Aliases
- SI Prefixes
""")
for unit_summary in _iter_unit_summary(namespace):
docstring.write("""
* - ``{0}``
- {1}
- {2}
- {3}
- {4!s:.1}
""".format(*unit_summary))
return docstring.getvalue()
def is_effectively_unity(value):
# value is *almost* always real, except, e.g., for u.mag**0.5, when
# it will be complex. Use try/except to ensure normal case is fast
try:
return _JUST_BELOW_UNITY <= value <= _JUST_ABOVE_UNITY
except TypeError: # value is complex
return (_JUST_BELOW_UNITY <= value.real <= _JUST_ABOVE_UNITY and
_JUST_BELOW_UNITY <= value.imag + 1 <= _JUST_ABOVE_UNITY)
def sanitize_scale(scale):
if is_effectively_unity(scale):
return 1.0
if np.iscomplex(scale): # scale is complex
if scale == 0.0:
return 0.0
if abs(scale.real) > abs(scale.imag):
if is_effectively_unity(scale.imag/scale.real + 1):
scale = scale.real
else:
if is_effectively_unity(scale.real/scale.imag + 1):
scale = complex(0., scale.imag)
return scale
def validate_power(p, support_tuples=False):
"""Convert a power to a floating point value, an integer, or a Fraction.
If a fractional power can be represented exactly as a floating point
number, convert it to a float, to make the math much faster; otherwise,
retain it as a `fractions.Fraction` object to avoid losing precision.
Conversely, if the value is indistinguishable from a rational number with a
low-numbered denominator, convert to a Fraction object.
Parameters
----------
p : float, int, Rational, Fraction
Power to be converted
"""
if isinstance(p, (numbers.Rational, Fraction)):
denom = p.denominator
if denom == 1:
p = int(p.numerator)
# This is bit-twiddling hack to see if the integer is a
# power of two
elif (denom & (denom - 1)) == 0:
p = float(p)
else:
try:
p = float(p)
except Exception:
if not np.isscalar(p):
raise ValueError("Quantities and Units may only be raised "
"to a scalar power")
else:
raise
if (p % 1.0) == 0.0:
# Denominators of 1 can just be integers.
p = int(p)
elif (p * 8.0) % 1.0 == 0.0:
# Leave alone if the denominator is exactly 2, 4 or 8, since this
# can be perfectly represented as a float, which means subsequent
# operations are much faster.
pass
else:
# Convert floats indistinguishable from a rational to Fraction.
# Here, we do not need to test values that are divisors of a higher
# number, such as 3, since it is already addressed by 6.
for i in (10, 9, 7, 6):
scaled = p * float(i)
if((scaled + 4. * _float_finfo.eps) % 1.0 <
8. * _float_finfo.eps):
p = Fraction(int(round(scaled)), i)
break
return p
def resolve_fractions(a, b):
"""
If either input is a Fraction, convert the other to a Fraction.
This ensures that any operation involving a Fraction will use
rational arithmetic and preserve precision.
"""
a_is_fraction = isinstance(a, Fraction)
b_is_fraction = isinstance(b, Fraction)
if a_is_fraction and not b_is_fraction:
b = Fraction(b)
elif not a_is_fraction and b_is_fraction:
a = Fraction(a)
return a, b
|