1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""General purpose timer related functions."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from ..extern import six
from ..extern.six.moves import range
# STDLIB
import time
import warnings
from collections import Iterable, OrderedDict
from functools import partial, wraps
# THIRD-PARTY
import numpy as np
# LOCAL
from .. import units as u
from .. import log
from .. import modeling
from .exceptions import AstropyUserWarning
__all__ = ['timefunc', 'RunTimePredictor']
__doctest_skip__ = ['timefunc']
def timefunc(num_tries=1, verbose=True):
"""Decorator to time a function or method.
Parameters
----------
num_tries : int, optional
Number of calls to make. Timer will take the
average run time.
verbose : bool, optional
Extra log information.
Returns
-------
tt : float
Average run time in seconds.
result
Output(s) from the function.
Examples
--------
To add timer to time `numpy.log` for 100 times with
verbose output::
import numpy as np
from astropy.utils.timer import timefunc
@timefunc(100)
def timed_log(x):
return np.log(x)
To run the decorated function above:
>>> t, y = timed_log(100)
INFO: timed_log took 9.29832458496e-06 s on AVERAGE for 100 call(s). [...]
>>> t
9.298324584960938e-06
>>> y
4.6051701859880918
"""
def real_decorator(function):
@wraps(function)
def wrapper(*args, **kwargs):
ts = time.time()
for i in range(num_tries):
result = function(*args, **kwargs)
te = time.time()
tt = (te - ts) / num_tries
if verbose: # pragma: no cover
log.info('{0} took {1} s on AVERAGE for {2} call(s).'.format(
function.__name__, tt, num_tries))
return tt, result
return wrapper
return real_decorator
class RunTimePredictor(object):
"""Class to predict run time.
.. note:: Only predict for single varying numeric input parameter.
Parameters
----------
func : function
Function to time.
args : tuple
Fixed positional argument(s) for the function.
kwargs : dict
Fixed keyword argument(s) for the function.
Examples
--------
>>> from astropy.utils.timer import RunTimePredictor
Set up a predictor for :math:`10^{x}`:
>>> p = RunTimePredictor(pow, 10)
Give it baseline data to use for prediction and
get the function output values:
>>> p.time_func(range(10, 1000, 200))
>>> for input, result in sorted(p.results.items()):
... print("pow(10, {0})\\n{1}".format(input, result))
pow(10, 10)
10000000000
pow(10, 210)
10000000000...
pow(10, 410)
10000000000...
pow(10, 610)
10000000000...
pow(10, 810)
10000000000...
Fit a straight line assuming :math:`\\text{arg}^{1}` relationship
(coefficients are returned):
>>> p.do_fit() # doctest: +SKIP
array([1.16777420e-05, 1.00135803e-08])
Predict run time for :math:`10^{5000}`:
>>> p.predict_time(5000) # doctest: +SKIP
6.174564361572262e-05
Plot the prediction:
>>> p.plot(xlabeltext='Power of 10') # doctest: +SKIP
.. image:: /_static/timer_prediction_pow10.png
:width: 450px
:alt: Example plot from `astropy.utils.timer.RunTimePredictor`
When the changing argument is not the last, e.g.,
:math:`x^{2}`, something like this might work:
>>> p = RunTimePredictor(lambda x: pow(x, 2))
>>> p.time_func([2, 3, 5])
>>> sorted(p.results.items())
[(2, 4), (3, 9), (5, 25)]
"""
def __init__(self, func, *args, **kwargs):
self._funcname = func.__name__
self._pfunc = partial(func, *args, **kwargs)
self._cache_good = OrderedDict()
self._cache_bad = []
self._cache_est = OrderedDict()
self._cache_out = OrderedDict()
self._fit_func = None
self._power = None
@property
def results(self):
"""Function outputs from `time_func`.
A dictionary mapping input arguments (fixed arguments
are not included) to their respective output values.
"""
return self._cache_out
@timefunc(num_tries=1, verbose=False)
def _timed_pfunc(self, arg):
"""Run partial func once for single arg and time it."""
return self._pfunc(arg)
def _cache_time(self, arg):
"""Cache timing results without repetition."""
if arg not in self._cache_good and arg not in self._cache_bad:
try:
result = self._timed_pfunc(arg)
except Exception as e:
warnings.warn(str(e), AstropyUserWarning)
self._cache_bad.append(arg)
else:
self._cache_good[arg] = result[0] # Run time
self._cache_out[arg] = result[1] # Function output
def time_func(self, arglist):
"""Time the partial function for a list of single args
and store run time in a cache. This forms a baseline for
the prediction.
This also stores function outputs in `results`.
Parameters
----------
arglist : list of numbers
List of input arguments to time.
"""
if not isinstance(arglist, Iterable):
arglist = [arglist]
# Preserve arglist order
for arg in arglist:
self._cache_time(arg)
# FUTURE: Implement N^x * O(log(N)) fancy fitting.
def do_fit(self, model=None, fitter=None, power=1, min_datapoints=3):
"""Fit a function to the lists of arguments and
their respective run time in the cache.
By default, this does a linear least-square fitting
to a straight line on run time w.r.t. argument values
raised to the given power, and returns the optimal
intercept and slope.
Parameters
----------
model : `astropy.modeling.Model`
Model for the expected trend of run time (Y-axis)
w.r.t. :math:`\\text{arg}^{\\text{power}}` (X-axis).
If `None`, will use `~astropy.modeling.polynomial.Polynomial1D`
with ``degree=1``.
fitter : `astropy.modeling.fitting.Fitter`
Fitter for the given model to extract optimal coefficient values.
If `None`, will use `~astropy.modeling.fitting.LinearLSQFitter`.
power : int, optional
Power of values to fit.
min_datapoints : int, optional
Minimum number of data points required for fitting.
They can be built up with `time_func`.
Returns
-------
a : array-like
Fitted `~astropy.modeling.FittableModel` parameters.
Raises
------
AssertionError
Insufficient data points for fitting.
ModelsError
Invalid model or fitter.
"""
# Reset related attributes
self._power = power
self._cache_est = OrderedDict()
x_arr = np.array(list(six.iterkeys(self._cache_good)))
assert x_arr.size >= min_datapoints, \
'Requires {0} points but has {1}'.format(min_datapoints,
x_arr.size)
if model is None:
model = modeling.models.Polynomial1D(1)
elif not isinstance(model, modeling.core.Model):
raise modeling.fitting.ModelsError(
'{0} is not a model.'.format(model))
if fitter is None:
fitter = modeling.fitting.LinearLSQFitter()
elif not isinstance(fitter, modeling.fitting.Fitter):
raise modeling.fitting.ModelsError(
'{0} is not a fitter.'.format(fitter))
self._fit_func = fitter(
model, x_arr**power, list(six.itervalues(self._cache_good)))
return self._fit_func.parameters
def predict_time(self, arg):
"""Predict run time for given argument.
If prediction is already cached, cached value is returned.
Parameters
----------
arg : number
Input argument to predict run time for.
Returns
-------
t_est : float
Estimated run time for given argument.
Raises
------
AssertionError
No fitted data for prediction.
"""
if arg in self._cache_est:
t_est = self._cache_est[arg]
else:
assert self._fit_func is not None, 'No fitted data for prediction'
t_est = self._fit_func(arg**self._power)
self._cache_est[arg] = t_est
return t_est
def plot(self, xscale='linear', yscale='linear', xlabeltext='args',
save_as=''): # pragma: no cover
"""Plot prediction.
.. note:: Uses `matplotlib <http://matplotlib.sourceforge.net/>`_.
Parameters
----------
xscale, yscale : {'linear', 'log', 'symlog'}
Scaling for `matplotlib.axes.Axes`.
xlabeltext : str, optional
Text for X-label.
save_as : str, optional
Save plot as given filename.
Raises
------
AssertionError
Insufficient data for plotting.
"""
import matplotlib.pyplot as plt
# Actual data
x_arr = sorted(self._cache_good)
y_arr = np.array([self._cache_good[x] for x in x_arr])
assert len(x_arr) > 1, 'Insufficient data for plotting'
# Auto-ranging
qmean = y_arr.mean() * u.second
for cur_u in (u.minute, u.second, u.millisecond, u.microsecond,
u.nanosecond):
val = qmean.to(cur_u).value
if 1000 > val >= 1:
break
y_arr = (y_arr * u.second).to(cur_u).value
fig, ax = plt.subplots()
ax.plot(x_arr, y_arr, 'kx-', label='Actual')
# Fitted data
if self._fit_func is not None:
x_est = list(six.iterkeys(self._cache_est))
y_est = (np.array(list(six.itervalues(self._cache_est))) *
u.second).to(cur_u).value
ax.scatter(x_est, y_est, marker='o', c='r', label='Predicted')
x_fit = np.array(sorted(x_arr + x_est))
y_fit = (self._fit_func(x_fit**self._power) *
u.second).to(cur_u).value
ax.plot(x_fit, y_fit, 'b--', label='Fit')
ax.set_xscale(xscale)
ax.set_yscale(yscale)
ax.set_xlabel(xlabeltext)
ax.set_ylabel('Run time ({})'.format(cur_u.to_string()))
ax.set_title(self._funcname)
ax.legend(loc='best', numpoints=1)
plt.draw()
if save_as:
plt.savefig(save_as)
|