File: stretch.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (528 lines) | stat: -rw-r--r-- 14,345 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
Classes that deal with stretching, i.e. mapping a range of [0:1] values onto
another set of [0:1] values with a transformation
"""

from __future__ import division, print_function

import numpy as np

from ..extern import six
from ..utils.misc import InheritDocstrings
from .transform import BaseTransform


__all__ = ["BaseStretch", "LinearStretch", "SqrtStretch", "PowerStretch",
           "PowerDistStretch", "SquaredStretch", "LogStretch", "AsinhStretch",
           "SinhStretch", "HistEqStretch", "ContrastBiasStretch"]


def _logn(n, x, out=None):
    """Calculate the log base n of x."""
    # We define this because numpy.lib.scimath.logn doesn't support out=
    if out is None:
        return np.log(x) / np.log(n)
    else:
        np.log(x, out=out)
        np.true_divide(out, np.log(n), out=out)
        return out


def _prepare(values, clip=True, out=None):
    """
    Prepare the data by optionally clipping and copying, and return the
    array that should be subsequently used for in-place calculations.
    """

    if clip:
        return np.clip(values, 0., 1., out=out)
    else:
        if out is None:
            return np.array(values, copy=True)
        else:
            out[:] = np.asarray(values)
            return out


@six.add_metaclass(InheritDocstrings)
class BaseStretch(BaseTransform):
    """
    Base class for the stretch classes, which, when called with an array
    of values in the range [0:1], return an transformed array of values,
    also in the range [0:1].
    """

    def __call__(self, values, clip=True, out=None):
        """
        Transform values using this stretch.

        Parameters
        ----------
        values : array-like
            The input values, which should already be normalized to the
            [0:1] range.
        clip : bool, optional
            If `True` (default), values outside the [0:1] range are
            clipped to the [0:1] range.
        out : `~numpy.ndarray`, optional
            If specified, the output values will be placed in this array
            (typically used for in-place calculations).

        Returns
        -------
        result : `~numpy.ndarray`
            The transformed values.
        """

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""


class LinearStretch(BaseStretch):
    """
    A linear stretch.

    The stretch is given by:

    .. math::
        y = x
    """

    def __call__(self, values, clip=True, out=None):
        return _prepare(values, clip=clip, out=out)

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return LinearStretch()


class SqrtStretch(BaseStretch):
    r"""
    A square root stretch.

    The stretch is given by:

    .. math::
        y = \sqrt{x}
    """

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.sqrt(values, out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return PowerStretch(2)


class PowerStretch(BaseStretch):
    r"""
    A power stretch.

    The stretch is given by:

    .. math::
        y = x^a

    Parameters
    ----------
    a : float
        The power index (see the above formula).
    """

    def __init__(self, a):
        super(PowerStretch, self).__init__()
        self.power = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.power(values, self.power, out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return PowerStretch(1. / self.power)


class PowerDistStretch(BaseStretch):
    r"""
    An alternative power stretch.

    The stretch is given by:

    .. math::
        y = \frac{a^x - 1}{a - 1}

    Parameters
    ----------
    a : float, optional
        The ``a`` parameter used in the above formula.  Default is 1000.
        ``a`` cannot be set to 1.
    """

    def __init__(self, a=1000.0):
        if a == 1:  # singularity
            raise ValueError("a cannot be set to 1")
        super(PowerDistStretch, self).__init__()
        self.exp = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.power(self.exp, values, out=values)
        np.subtract(values, 1, out=values)
        np.true_divide(values, self.exp - 1.0, out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return InvertedPowerDistStretch(a=self.exp)


class InvertedPowerDistStretch(BaseStretch):
    r"""
    Inverse transformation for
    `~astropy.image.scaling.PowerDistStretch`.

    The stretch is given by:

    .. math::
        y = \frac{\log(y (a-1) + 1)}{\log a}

    Parameters
    ----------
    a : float, optional
        The ``a`` parameter used in the above formula.  Default is 1000.
        ``a`` cannot be set to 1.
    """

    def __init__(self, a=1000.0):
        if a == 1:  # singularity
            raise ValueError("a cannot be set to 1")
        super(InvertedPowerDistStretch, self).__init__()
        self.exp = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.multiply(values, self.exp - 1.0, out=values)
        np.add(values, 1, out=values)
        _logn(self.exp, values, out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return PowerDistStretch(a=self.exp)


class SquaredStretch(PowerStretch):
    r"""
    A convenience class for a power stretch of 2.

    The stretch is given by:

    .. math::
        y = x^2
    """

    def __init__(self):
        super(SquaredStretch, self).__init__(2)

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return SqrtStretch()


class LogStretch(BaseStretch):
    r"""
    A log stretch.

    The stretch is given by:

    .. math::
        y = \frac{\log{(a x + 1)}}{\log{(a + 1)}}.

    Parameters
    ----------
    a : float
        The ``a`` parameter used in the above formula.  Default is 1000.
    """

    def __init__(self, a=1000.0):
        super(LogStretch, self).__init__()
        self.exp = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.multiply(values, self.exp, out=values)
        np.add(values, 1., out=values)
        np.log(values, out=values)
        np.true_divide(values, np.log(self.exp + 1.), out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return InvertedLogStretch(self.exp)


class InvertedLogStretch(BaseStretch):
    r"""
    Inverse transformation for `~astropy.image.scaling.LogStretch`.

    The stretch is given by:

    .. math::
        y = \frac{e^{y} (a + 1) -1}{a}

    Parameters
    ----------
    a : float, optional
        The ``a`` parameter used in the above formula.  Default is 1000.
    """

    def __init__(self, a):
        super(InvertedLogStretch, self).__init__()
        self.exp = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.multiply(values, np.log(self.exp + 1.), out=values)
        np.exp(values, out=values)
        np.subtract(values, 1., out=values)
        np.true_divide(values, self.exp, out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return LogStretch(self.exp)


class AsinhStretch(BaseStretch):
    r"""
    An asinh stretch.

    The stretch is given by:

    .. math::
        y = \frac{{\rm asinh}(x / a)}{{\rm asinh}(1 / a)}.

    Parameters
    ----------
    a : float, optional
        The ``a`` parameter used in the above formula.  The value of
        this parameter is where the asinh curve transitions from linear
        to logarithmic behavior, expressed as a fraction of the
        normalized image.  Must be in the range between 0 and 1.
        Default is 0.1
    """

    def __init__(self, a=0.1):
        super(AsinhStretch, self).__init__()
        self.a = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.true_divide(values, self.a, out=values)
        np.arcsinh(values, out=values)
        np.true_divide(values, np.arcsinh(1. / self.a), out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return SinhStretch(a=1. / np.arcsinh(1. / self.a))


class SinhStretch(BaseStretch):
    r"""
    A sinh stretch.

    The stretch is given by:

    .. math::
        y = \frac{{\rm sinh}(x / a)}{{\rm sinh}(1 / a)}

    Parameters
    ----------
    a : float, optional
        The ``a`` parameter used in the above formula.  Default is 1/3.
    """

    def __init__(self, a=1./3.):
        super(SinhStretch, self).__init__()
        self.a = a

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        np.true_divide(values, self.a, out=values)
        np.sinh(values, out=values)
        np.true_divide(values, np.sinh(1. / self.a), out=values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return AsinhStretch(a=1. / np.sinh(1. / self.a))


class HistEqStretch(BaseStretch):
    """
    A histogram equalization stretch.

    Parameters
    ----------
    data : array-like
        The data defining the equalization.
    values : array-like, optional
        The input image values, which should already be normalized to
        the [0:1] range.
    """

    def __init__(self, data, values=None):

        # Assume data is not necessarily normalized at this point
        self.data = np.sort(data.ravel())
        vmin = self.data.min()
        vmax = self.data.max()
        self.data = (self.data - vmin) / (vmax - vmin)

        # Compute relative position of each pixel
        if values is None:
            self.values = np.linspace(0., 1., len(self.data))
        else:
            self.values = values

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        values[:] = np.interp(values, self.data, self.values)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return InvertedHistEqStretch(self.data, values=self.values)


class InvertedHistEqStretch(BaseStretch):
    """
    Inverse transformation for `~astropy.image.scaling.HistEqStretch`.

    Parameters
    ----------
    data : array-like
        The data defining the equalization.
    values : array-like, optional
        The input image values, which should already be normalized to
        the [0:1] range.
    """

    def __init__(self, data, values=None):
        self.data = data
        if values is None:
            self.values = np.linspace(0., 1., len(self.data))
        else:
            self.values = values

    def __call__(self, values, clip=True, out=None):
        values = _prepare(values, clip=clip, out=out)
        values[:] = np.interp(values, self.values, self.data)
        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return HistEqStretch(self.data, values=self.values)


class ContrastBiasStretch(BaseStretch):
    r"""
    A stretch that takes into account contrast and bias.

    The stretch is given by:

    .. math::
        y = (x - {\rm bias}) * {\rm contrast} + 0.5

    and the output values are clipped to the [0:1] range.

    Parameters
    ----------
    contrast : float
        The contrast parameter (see the above formula).

    bias : float
        The bias parameter (see the above formula).
    """

    def __init__(self, contrast, bias):
        super(ContrastBiasStretch, self).__init__()
        self.contrast = contrast
        self.bias = bias

    def __call__(self, values, clip=True, out=None):
        # As a special case here, we only clip *after* the
        # transformation since it does not map [0:1] to [0:1]
        values = _prepare(values, clip=False, out=out)

        np.subtract(values, self.bias, out=values)
        np.multiply(values, self.contrast, out=values)
        np.add(values, 0.5, out=values)

        if clip:
            np.clip(values, 0, 1, out=values)

        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return InvertedContrastBiasStretch(self.contrast, self.bias)


class InvertedContrastBiasStretch(BaseStretch):
    """
    Inverse transformation for ContrastBiasStretch.

    Parameters
    ----------
    contrast : float
        The contrast parameter (see
        `~astropy.visualization.ConstrastBiasStretch).

    bias : float
        The bias parameter (see
        `~astropy.visualization.ConstrastBiasStretch).
    """

    def __init__(self, contrast, bias):
        super(InvertedContrastBiasStretch, self).__init__()
        self.contrast = contrast
        self.bias = bias

    def __call__(self, values, clip=True, out=None):
        # As a special case here, we only clip *after* the
        # transformation since it does not map [0:1] to [0:1]
        values = _prepare(values, clip=False, out=out)
        np.subtract(values, 0.5, out=values)
        np.true_divide(values, self.contrast, out=values)
        np.add(values, self.bias, out=values)

        if clip:
            np.clip(values, 0, 1, out=values)

        return values

    @property
    def inverse(self):
        """A stretch object that performs the inverse operation."""
        return ContrastBiasStretch(self.contrast, self.bias)