File: test_norm.py

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (162 lines) | stat: -rw-r--r-- 6,357 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Licensed under a 3-clause BSD style license - see LICENSE.rst

import numpy as np
from numpy import ma
from numpy.testing import assert_allclose
from ...tests.helper import pytest
from ..mpl_normalize import ImageNormalize, simple_norm
from ..interval import ManualInterval
from ..stretch import SqrtStretch

try:
    import matplotlib    # pylint: disable=W0611
    HAS_MATPLOTLIB = True
except ImportError:
    HAS_MATPLOTLIB = False


DATA = np.linspace(0., 15., 6)
DATA2 = np.arange(3)
DATA2SCL = 0.5 * DATA2


@pytest.mark.skipif('HAS_MATPLOTLIB')
def test_normalize_error_message():
    with pytest.raises(ImportError) as exc:
        ImageNormalize()
    assert (exc.value.args[0] == "matplotlib is required in order to use "
            "this class.")


@pytest.mark.skipif('not HAS_MATPLOTLIB')
class TestNormalize(object):

    def test_scalar(self):
        norm = ImageNormalize(vmin=2., vmax=10., stretch=SqrtStretch(),
                              clip=True)
        norm2 = ImageNormalize(data=6, interval=ManualInterval(2, 10),
                               stretch=SqrtStretch(), clip=True)
        assert_allclose(norm(6), 0.70710678)
        assert_allclose(norm(6), norm2(6))

    def test_clip(self):
        norm = ImageNormalize(vmin=2., vmax=10., stretch=SqrtStretch(),
                              clip=True)
        norm2 = ImageNormalize(DATA, interval=ManualInterval(2, 10),
                               stretch=SqrtStretch(), clip=True)
        output = norm(DATA)
        expected = [0., 0.35355339, 0.70710678, 0.93541435, 1., 1.]
        assert_allclose(output, expected)
        assert_allclose(output.mask, [0, 0, 0, 0, 0, 0])
        assert_allclose(output, norm2(DATA))

    def test_noclip(self):
        norm = ImageNormalize(vmin=2., vmax=10., stretch=SqrtStretch(),
                              clip=False)
        norm2 = ImageNormalize(DATA, interval=ManualInterval(2, 10),
                               stretch=SqrtStretch(), clip=False)
        output = norm(DATA)
        expected = [np.nan, 0.35355339, 0.70710678, 0.93541435, 1.11803399,
                    1.27475488]
        assert_allclose(output, expected)
        assert_allclose(output.mask, [0, 0, 0, 0, 0, 0])
        assert_allclose(norm.inverse(norm(DATA))[1:], DATA[1:])
        assert_allclose(output, norm2(DATA))

    def test_implicit_autoscale(self):
        norm = ImageNormalize(vmin=None, vmax=10., stretch=SqrtStretch(),
                              clip=False)
        norm2 = ImageNormalize(DATA, interval=ManualInterval(None, 10),
                               stretch=SqrtStretch(), clip=False)
        output = norm(DATA)
        assert norm.vmin == np.min(DATA)
        assert norm.vmax == 10.
        assert_allclose(output, norm2(DATA))

        norm = ImageNormalize(vmin=2., vmax=None, stretch=SqrtStretch(),
                              clip=False)
        norm2 = ImageNormalize(DATA, interval=ManualInterval(2, None),
                               stretch=SqrtStretch(), clip=False)
        output = norm(DATA)
        assert norm.vmin == 2.
        assert norm.vmax == np.max(DATA)
        assert_allclose(output, norm2(DATA))

    def test_masked_clip(self):
        mdata = ma.array(DATA, mask=[0, 0, 1, 0, 0, 0])
        norm = ImageNormalize(vmin=2., vmax=10., stretch=SqrtStretch(),
                              clip=True)
        norm2 = ImageNormalize(mdata, interval=ManualInterval(2, 10),
                               stretch=SqrtStretch(), clip=True)
        output = norm(mdata)
        expected = [0., 0.35355339, 1., 0.93541435, 1., 1.]
        assert_allclose(output.filled(-10), expected)
        assert_allclose(output.mask, [0, 0, 0, 0, 0, 0])
        assert_allclose(output, norm2(mdata))

    def test_masked_noclip(self):
        mdata = ma.array(DATA, mask=[0, 0, 1, 0, 0, 0])
        norm = ImageNormalize(vmin=2., vmax=10., stretch=SqrtStretch(),
                              clip=False)
        norm2 = ImageNormalize(mdata, interval=ManualInterval(2, 10),
                               stretch=SqrtStretch(), clip=False)
        output = norm(mdata)
        expected = [np.nan, 0.35355339, -10, 0.93541435, 1.11803399,
                    1.27475488]
        assert_allclose(output.filled(-10), expected)
        assert_allclose(output.mask, [0, 0, 1, 0, 0, 0])

        assert_allclose(norm.inverse(norm(DATA))[1:], DATA[1:])
        assert_allclose(output, norm2(mdata))


@pytest.mark.skipif('not HAS_MATPLOTLIB')
class TestImageScaling(object):

    def test_linear(self):
        """Test linear scaling."""
        norm = simple_norm(DATA2, stretch='linear')
        assert_allclose(norm(DATA2), DATA2SCL, atol=0, rtol=1.e-5)

    def test_sqrt(self):
        """Test sqrt scaling."""
        norm = simple_norm(DATA2, stretch='sqrt')
        assert_allclose(norm(DATA2), np.sqrt(DATA2SCL), atol=0, rtol=1.e-5)

    def test_power(self):
        """Test power scaling."""
        power = 3.0
        norm = simple_norm(DATA2, stretch='power', power=power)
        assert_allclose(norm(DATA2), DATA2SCL ** power, atol=0, rtol=1.e-5)

    def test_log(self):
        """Test log10 scaling."""
        norm = simple_norm(DATA2, stretch='log')
        ref = np.log10(1000 * DATA2SCL + 1.0) / np.log10(1001.0)
        assert_allclose(norm(DATA2), ref, atol=0, rtol=1.e-5)

    def test_asinh(self):
        """Test asinh scaling."""
        a = 0.1
        norm = simple_norm(DATA2, stretch='asinh', asinh_a=a)
        ref = np.arcsinh(DATA2SCL / a) / np.arcsinh(1. / a)
        assert_allclose(norm(DATA2), ref, atol=0, rtol=1.e-5)

    def test_min(self):
        """Test linear scaling."""
        norm = simple_norm(DATA2, stretch='linear', min_cut=1.)
        assert_allclose(norm(DATA2), [0., 0., 1.], atol=0, rtol=1.e-5)

    def test_percent(self):
        """Test percent keywords."""
        norm = simple_norm(DATA2, stretch='linear', percent=99.)
        assert_allclose(norm(DATA2), DATA2SCL, atol=0, rtol=1.e-5)

        norm2 = simple_norm(DATA2, stretch='linear', min_percent=0.5,
                         max_percent=99.5)
        assert_allclose(norm(DATA2), norm2(DATA2), atol=0, rtol=1.e-5)

    def test_invalid_stretch(self):
        """Test invalid stretch keyword."""
        with pytest.raises(ValueError):
            simple_norm(DATA2, stretch='invalid')