1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
#include "erfa.h"
void eraNut00b(double date1, double date2, double *dpsi, double *deps)
/*
** - - - - - - - - - -
** e r a N u t 0 0 b
** - - - - - - - - - -
**
** Nutation, IAU 2000B model.
**
** Given:
** date1,date2 double TT as a 2-part Julian Date (Note 1)
**
** Returned:
** dpsi,deps double nutation, luni-solar + planetary (Note 2)
**
** Notes:
**
** 1) The TT date date1+date2 is a Julian Date, apportioned in any
** convenient way between the two arguments. For example,
** JD(TT)=2450123.7 could be expressed in any of these ways,
** among others:
**
** date1 date2
**
** 2450123.7 0.0 (JD method)
** 2451545.0 -1421.3 (J2000 method)
** 2400000.5 50123.2 (MJD method)
** 2450123.5 0.2 (date & time method)
**
** The JD method is the most natural and convenient to use in
** cases where the loss of several decimal digits of resolution
** is acceptable. The J2000 method is best matched to the way
** the argument is handled internally and will deliver the
** optimum resolution. The MJD method and the date & time methods
** are both good compromises between resolution and convenience.
**
** 2) The nutation components in longitude and obliquity are in radians
** and with respect to the equinox and ecliptic of date. The
** obliquity at J2000.0 is assumed to be the Lieske et al. (1977)
** value of 84381.448 arcsec. (The errors that result from using
** this function with the IAU 2006 value of 84381.406 arcsec can be
** neglected.)
**
** The nutation model consists only of luni-solar terms, but
** includes also a fixed offset which compensates for certain long-
** period planetary terms (Note 7).
**
** 3) This function is an implementation of the IAU 2000B abridged
** nutation model formally adopted by the IAU General Assembly in
** 2000. The function computes the MHB_2000_SHORT luni-solar
** nutation series (Luzum 2001), but without the associated
** corrections for the precession rate adjustments and the offset
** between the GCRS and J2000.0 mean poles.
**
** 4) The full IAU 2000A (MHB2000) nutation model contains nearly 1400
** terms. The IAU 2000B model (McCarthy & Luzum 2003) contains only
** 77 terms, plus additional simplifications, yet still delivers
** results of 1 mas accuracy at present epochs. This combination of
** accuracy and size makes the IAU 2000B abridged nutation model
** suitable for most practical applications.
**
** The function delivers a pole accurate to 1 mas from 1900 to 2100
** (usually better than 1 mas, very occasionally just outside
** 1 mas). The full IAU 2000A model, which is implemented in the
** function eraNut00a (q.v.), delivers considerably greater accuracy
** at current dates; however, to realize this improved accuracy,
** corrections for the essentially unpredictable free-core-nutation
** (FCN) must also be included.
**
** 5) The present function provides classical nutation. The
** MHB_2000_SHORT algorithm, from which it is adapted, deals also
** with (i) the offsets between the GCRS and mean poles and (ii) the
** adjustments in longitude and obliquity due to the changed
** precession rates. These additional functions, namely frame bias
** and precession adjustments, are supported by the ERFA functions
** eraBi00 and eraPr00.
**
** 6) The MHB_2000_SHORT algorithm also provides "total" nutations,
** comprising the arithmetic sum of the frame bias, precession
** adjustments, and nutation (luni-solar + planetary). These total
** nutations can be used in combination with an existing IAU 1976
** precession implementation, such as eraPmat76, to deliver GCRS-
** to-true predictions of mas accuracy at current epochs. However,
** for symmetry with the eraNut00a function (q.v. for the reasons),
** the ERFA functions do not generate the "total nutations"
** directly. Should they be required, they could of course easily
** be generated by calling eraBi00, eraPr00 and the present function
** and adding the results.
**
** 7) The IAU 2000B model includes "planetary bias" terms that are
** fixed in size but compensate for long-period nutations. The
** amplitudes quoted in McCarthy & Luzum (2003), namely
** Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are optimized for
** the "total nutations" method described in Note 6. The Luzum
** (2001) values used in this ERFA implementation, namely -0.135 mas
** and +0.388 mas, are optimized for the "rigorous" method, where
** frame bias, precession and nutation are applied separately and in
** that order. During the interval 1995-2050, the ERFA
** implementation delivers a maximum error of 1.001 mas (not
** including FCN).
**
** References:
**
** Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions
** for the precession quantities based upon the IAU /1976/ system of
** astronomical constants", Astron.Astrophys. 58, 1-2, 1-16. (1977)
**
** Luzum, B., private communication, 2001 (Fortran code
** MHB_2000_SHORT)
**
** McCarthy, D.D. & Luzum, B.J., "An abridged model of the
** precession-nutation of the celestial pole", Cel.Mech.Dyn.Astron.
** 85, 37-49 (2003)
**
** Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
** Francou, G., Laskar, J., Astron.Astrophys. 282, 663-683 (1994)
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** Derived, with permission, from the SOFA library. See notes at end of file.
*/
{
double t, el, elp, f, d, om, arg, dp, de, sarg, carg,
dpsils, depsls, dpsipl, depspl;
int i;
/* Units of 0.1 microarcsecond to radians */
static const double U2R = ERFA_DAS2R / 1e7;
/* ---------------------------------------- */
/* Fixed offsets in lieu of planetary terms */
/* ---------------------------------------- */
static const double DPPLAN = -0.135 * ERFA_DMAS2R;
static const double DEPLAN = 0.388 * ERFA_DMAS2R;
/* --------------------------------------------------- */
/* Luni-solar nutation: argument and term coefficients */
/* --------------------------------------------------- */
/* The units for the sine and cosine coefficients are */
/* 0.1 microarcsec and the same per Julian century */
static const struct {
int nl,nlp,nf,nd,nom; /* coefficients of l,l',F,D,Om */
double ps,pst,pc; /* longitude sin, t*sin, cos coefficients */
double ec,ect,es; /* obliquity cos, t*cos, sin coefficients */
} x[] = {
/* 1-10 */
{ 0, 0, 0, 0,1,
-172064161.0, -174666.0, 33386.0, 92052331.0, 9086.0, 15377.0},
{ 0, 0, 2,-2,2,
-13170906.0, -1675.0, -13696.0, 5730336.0, -3015.0, -4587.0},
{ 0, 0, 2, 0,2,-2276413.0,-234.0, 2796.0, 978459.0,-485.0,1374.0},
{ 0, 0, 0, 0,2,2074554.0, 207.0, -698.0,-897492.0, 470.0,-291.0},
{ 0, 1, 0, 0,0,1475877.0,-3633.0,11817.0, 73871.0,-184.0,-1924.0},
{ 0, 1, 2,-2,2,-516821.0, 1226.0, -524.0, 224386.0,-677.0,-174.0},
{ 1, 0, 0, 0,0, 711159.0, 73.0, -872.0, -6750.0, 0.0, 358.0},
{ 0, 0, 2, 0,1,-387298.0, -367.0, 380.0, 200728.0, 18.0, 318.0},
{ 1, 0, 2, 0,2,-301461.0, -36.0, 816.0, 129025.0, -63.0, 367.0},
{ 0,-1, 2,-2,2, 215829.0, -494.0, 111.0, -95929.0, 299.0, 132.0},
/* 11-20 */
{ 0, 0, 2,-2,1, 128227.0, 137.0, 181.0, -68982.0, -9.0, 39.0},
{-1, 0, 2, 0,2, 123457.0, 11.0, 19.0, -53311.0, 32.0, -4.0},
{-1, 0, 0, 2,0, 156994.0, 10.0, -168.0, -1235.0, 0.0, 82.0},
{ 1, 0, 0, 0,1, 63110.0, 63.0, 27.0, -33228.0, 0.0, -9.0},
{-1, 0, 0, 0,1, -57976.0, -63.0, -189.0, 31429.0, 0.0, -75.0},
{-1, 0, 2, 2,2, -59641.0, -11.0, 149.0, 25543.0, -11.0, 66.0},
{ 1, 0, 2, 0,1, -51613.0, -42.0, 129.0, 26366.0, 0.0, 78.0},
{-2, 0, 2, 0,1, 45893.0, 50.0, 31.0, -24236.0, -10.0, 20.0},
{ 0, 0, 0, 2,0, 63384.0, 11.0, -150.0, -1220.0, 0.0, 29.0},
{ 0, 0, 2, 2,2, -38571.0, -1.0, 158.0, 16452.0, -11.0, 68.0},
/* 21-30 */
{ 0,-2, 2,-2,2, 32481.0, 0.0, 0.0, -13870.0, 0.0, 0.0},
{-2, 0, 0, 2,0, -47722.0, 0.0, -18.0, 477.0, 0.0, -25.0},
{ 2, 0, 2, 0,2, -31046.0, -1.0, 131.0, 13238.0, -11.0, 59.0},
{ 1, 0, 2,-2,2, 28593.0, 0.0, -1.0, -12338.0, 10.0, -3.0},
{-1, 0, 2, 0,1, 20441.0, 21.0, 10.0, -10758.0, 0.0, -3.0},
{ 2, 0, 0, 0,0, 29243.0, 0.0, -74.0, -609.0, 0.0, 13.0},
{ 0, 0, 2, 0,0, 25887.0, 0.0, -66.0, -550.0, 0.0, 11.0},
{ 0, 1, 0, 0,1, -14053.0, -25.0, 79.0, 8551.0, -2.0, -45.0},
{-1, 0, 0, 2,1, 15164.0, 10.0, 11.0, -8001.0, 0.0, -1.0},
{ 0, 2, 2,-2,2, -15794.0, 72.0, -16.0, 6850.0, -42.0, -5.0},
/* 31-40 */
{ 0, 0,-2, 2,0, 21783.0, 0.0, 13.0, -167.0, 0.0, 13.0},
{ 1, 0, 0,-2,1, -12873.0, -10.0, -37.0, 6953.0, 0.0, -14.0},
{ 0,-1, 0, 0,1, -12654.0, 11.0, 63.0, 6415.0, 0.0, 26.0},
{-1, 0, 2, 2,1, -10204.0, 0.0, 25.0, 5222.0, 0.0, 15.0},
{ 0, 2, 0, 0,0, 16707.0, -85.0, -10.0, 168.0, -1.0, 10.0},
{ 1, 0, 2, 2,2, -7691.0, 0.0, 44.0, 3268.0, 0.0, 19.0},
{-2, 0, 2, 0,0, -11024.0, 0.0, -14.0, 104.0, 0.0, 2.0},
{ 0, 1, 2, 0,2, 7566.0, -21.0, -11.0, -3250.0, 0.0, -5.0},
{ 0, 0, 2, 2,1, -6637.0, -11.0, 25.0, 3353.0, 0.0, 14.0},
{ 0,-1, 2, 0,2, -7141.0, 21.0, 8.0, 3070.0, 0.0, 4.0},
/* 41-50 */
{ 0, 0, 0, 2,1, -6302.0, -11.0, 2.0, 3272.0, 0.0, 4.0},
{ 1, 0, 2,-2,1, 5800.0, 10.0, 2.0, -3045.0, 0.0, -1.0},
{ 2, 0, 2,-2,2, 6443.0, 0.0, -7.0, -2768.0, 0.0, -4.0},
{-2, 0, 0, 2,1, -5774.0, -11.0, -15.0, 3041.0, 0.0, -5.0},
{ 2, 0, 2, 0,1, -5350.0, 0.0, 21.0, 2695.0, 0.0, 12.0},
{ 0,-1, 2,-2,1, -4752.0, -11.0, -3.0, 2719.0, 0.0, -3.0},
{ 0, 0, 0,-2,1, -4940.0, -11.0, -21.0, 2720.0, 0.0, -9.0},
{-1,-1, 0, 2,0, 7350.0, 0.0, -8.0, -51.0, 0.0, 4.0},
{ 2, 0, 0,-2,1, 4065.0, 0.0, 6.0, -2206.0, 0.0, 1.0},
{ 1, 0, 0, 2,0, 6579.0, 0.0, -24.0, -199.0, 0.0, 2.0},
/* 51-60 */
{ 0, 1, 2,-2,1, 3579.0, 0.0, 5.0, -1900.0, 0.0, 1.0},
{ 1,-1, 0, 0,0, 4725.0, 0.0, -6.0, -41.0, 0.0, 3.0},
{-2, 0, 2, 0,2, -3075.0, 0.0, -2.0, 1313.0, 0.0, -1.0},
{ 3, 0, 2, 0,2, -2904.0, 0.0, 15.0, 1233.0, 0.0, 7.0},
{ 0,-1, 0, 2,0, 4348.0, 0.0, -10.0, -81.0, 0.0, 2.0},
{ 1,-1, 2, 0,2, -2878.0, 0.0, 8.0, 1232.0, 0.0, 4.0},
{ 0, 0, 0, 1,0, -4230.0, 0.0, 5.0, -20.0, 0.0, -2.0},
{-1,-1, 2, 2,2, -2819.0, 0.0, 7.0, 1207.0, 0.0, 3.0},
{-1, 0, 2, 0,0, -4056.0, 0.0, 5.0, 40.0, 0.0, -2.0},
{ 0,-1, 2, 2,2, -2647.0, 0.0, 11.0, 1129.0, 0.0, 5.0},
/* 61-70 */
{-2, 0, 0, 0,1, -2294.0, 0.0, -10.0, 1266.0, 0.0, -4.0},
{ 1, 1, 2, 0,2, 2481.0, 0.0, -7.0, -1062.0, 0.0, -3.0},
{ 2, 0, 0, 0,1, 2179.0, 0.0, -2.0, -1129.0, 0.0, -2.0},
{-1, 1, 0, 1,0, 3276.0, 0.0, 1.0, -9.0, 0.0, 0.0},
{ 1, 1, 0, 0,0, -3389.0, 0.0, 5.0, 35.0, 0.0, -2.0},
{ 1, 0, 2, 0,0, 3339.0, 0.0, -13.0, -107.0, 0.0, 1.0},
{-1, 0, 2,-2,1, -1987.0, 0.0, -6.0, 1073.0, 0.0, -2.0},
{ 1, 0, 0, 0,2, -1981.0, 0.0, 0.0, 854.0, 0.0, 0.0},
{-1, 0, 0, 1,0, 4026.0, 0.0, -353.0, -553.0, 0.0,-139.0},
{ 0, 0, 2, 1,2, 1660.0, 0.0, -5.0, -710.0, 0.0, -2.0},
/* 71-77 */
{-1, 0, 2, 4,2, -1521.0, 0.0, 9.0, 647.0, 0.0, 4.0},
{-1, 1, 0, 1,1, 1314.0, 0.0, 0.0, -700.0, 0.0, 0.0},
{ 0,-2, 2,-2,1, -1283.0, 0.0, 0.0, 672.0, 0.0, 0.0},
{ 1, 0, 2, 2,1, -1331.0, 0.0, 8.0, 663.0, 0.0, 4.0},
{-2, 0, 2, 2,2, 1383.0, 0.0, -2.0, -594.0, 0.0, -2.0},
{-1, 0, 0, 0,2, 1405.0, 0.0, 4.0, -610.0, 0.0, 2.0},
{ 1, 1, 2,-2,2, 1290.0, 0.0, 0.0, -556.0, 0.0, 0.0}
};
/* Number of terms in the series */
const int NLS = (int) (sizeof x / sizeof x[0]);
/*--------------------------------------------------------------------*/
/* Interval between fundamental epoch J2000.0 and given date (JC). */
t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
/* --------------------*/
/* LUNI-SOLAR NUTATION */
/* --------------------*/
/* Fundamental (Delaunay) arguments from Simon et al. (1994) */
/* Mean anomaly of the Moon. */
el = fmod(485868.249036 + (1717915923.2178) * t, ERFA_TURNAS) * ERFA_DAS2R;
/* Mean anomaly of the Sun. */
elp = fmod(1287104.79305 + (129596581.0481) * t, ERFA_TURNAS) * ERFA_DAS2R;
/* Mean argument of the latitude of the Moon. */
f = fmod(335779.526232 + (1739527262.8478) * t, ERFA_TURNAS) * ERFA_DAS2R;
/* Mean elongation of the Moon from the Sun. */
d = fmod(1072260.70369 + (1602961601.2090) * t, ERFA_TURNAS) * ERFA_DAS2R;
/* Mean longitude of the ascending node of the Moon. */
om = fmod(450160.398036 + (-6962890.5431) * t, ERFA_TURNAS) * ERFA_DAS2R;
/* Initialize the nutation values. */
dp = 0.0;
de = 0.0;
/* Summation of luni-solar nutation series (smallest terms first). */
for (i = NLS-1; i >= 0; i--) {
/* Argument and functions. */
arg = fmod( (double)x[i].nl * el +
(double)x[i].nlp * elp +
(double)x[i].nf * f +
(double)x[i].nd * d +
(double)x[i].nom * om, ERFA_D2PI );
sarg = sin(arg);
carg = cos(arg);
/* Term. */
dp += (x[i].ps + x[i].pst * t) * sarg + x[i].pc * carg;
de += (x[i].ec + x[i].ect * t) * carg + x[i].es * sarg;
}
/* Convert from 0.1 microarcsec units to radians. */
dpsils = dp * U2R;
depsls = de * U2R;
/* ------------------------------*/
/* IN LIEU OF PLANETARY NUTATION */
/* ------------------------------*/
/* Fixed offset to correct for missing terms in truncated series. */
dpsipl = DPPLAN;
depspl = DEPLAN;
/* --------*/
/* RESULTS */
/* --------*/
/* Add luni-solar and planetary components. */
*dpsi = dpsils + dpsipl;
*deps = depsls + depspl;
return;
}
/*----------------------------------------------------------------------
**
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** All rights reserved.
**
** This library is derived, with permission, from the International
** Astronomical Union's "Standards of Fundamental Astronomy" library,
** available from http://www.iausofa.org.
**
** The ERFA version is intended to retain identical functionality to
** the SOFA library, but made distinct through different function and
** file names, as set out in the SOFA license conditions. The SOFA
** original has a role as a reference standard for the IAU and IERS,
** and consequently redistribution is permitted only in its unaltered
** state. The ERFA version is not subject to this restriction and
** therefore can be included in distributions which do not support the
** concept of "read only" software.
**
** Although the intent is to replicate the SOFA API (other than
** replacement of prefix names) and results (with the exception of
** bugs; any that are discovered will be fixed), SOFA is not
** responsible for any errors found in this version of the library.
**
** If you wish to acknowledge the SOFA heritage, please acknowledge
** that you are using a library derived from SOFA, rather than SOFA
** itself.
**
**
** TERMS AND CONDITIONS
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1 Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
**
** 2 Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in
** the documentation and/or other materials provided with the
** distribution.
**
** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
** the International Astronomical Union nor the names of its
** contributors may be used to endorse or promote products derived
** from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
** POSSIBILITY OF SUCH DAMAGE.
**
*/
|