1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
#include "erfa.h"
void eraNut80(double date1, double date2, double *dpsi, double *deps)
/*
** - - - - - - - - -
** e r a N u t 8 0
** - - - - - - - - -
**
** Nutation, IAU 1980 model.
**
** Given:
** date1,date2 double TT as a 2-part Julian Date (Note 1)
**
** Returned:
** dpsi double nutation in longitude (radians)
** deps double nutation in obliquity (radians)
**
** Notes:
**
** 1) The TT date date1+date2 is a Julian Date, apportioned in any
** convenient way between the two arguments. For example,
** JD(TT)=2450123.7 could be expressed in any of these ways,
** among others:
**
** date1 date2
**
** 2450123.7 0.0 (JD method)
** 2451545.0 -1421.3 (J2000 method)
** 2400000.5 50123.2 (MJD method)
** 2450123.5 0.2 (date & time method)
**
** The JD method is the most natural and convenient to use in
** cases where the loss of several decimal digits of resolution
** is acceptable. The J2000 method is best matched to the way
** the argument is handled internally and will deliver the
** optimum resolution. The MJD method and the date & time methods
** are both good compromises between resolution and convenience.
**
** 2) The nutation components are with respect to the ecliptic of
** date.
**
** Called:
** eraAnpm normalize angle into range +/- pi
**
** Reference:
**
** Explanatory Supplement to the Astronomical Almanac,
** P. Kenneth Seidelmann (ed), University Science Books (1992),
** Section 3.222 (p111).
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** Derived, with permission, from the SOFA library. See notes at end of file.
*/
{
double t, el, elp, f, d, om, dp, de, arg, s, c;
int j;
/* Units of 0.1 milliarcsecond to radians */
const double U2R = ERFA_DAS2R / 1e4;
/* ------------------------------------------------ */
/* Table of multiples of arguments and coefficients */
/* ------------------------------------------------ */
/* The units for the sine and cosine coefficients are 0.1 mas and */
/* the same per Julian century */
static const struct {
int nl,nlp,nf,nd,nom; /* coefficients of l,l',F,D,Om */
double sp,spt; /* longitude sine, 1 and t coefficients */
double ce,cet; /* obliquity cosine, 1 and t coefficients */
} x[] = {
/* 1-10 */
{ 0, 0, 0, 0, 1, -171996.0, -174.2, 92025.0, 8.9 },
{ 0, 0, 0, 0, 2, 2062.0, 0.2, -895.0, 0.5 },
{ -2, 0, 2, 0, 1, 46.0, 0.0, -24.0, 0.0 },
{ 2, 0, -2, 0, 0, 11.0, 0.0, 0.0, 0.0 },
{ -2, 0, 2, 0, 2, -3.0, 0.0, 1.0, 0.0 },
{ 1, -1, 0, -1, 0, -3.0, 0.0, 0.0, 0.0 },
{ 0, -2, 2, -2, 1, -2.0, 0.0, 1.0, 0.0 },
{ 2, 0, -2, 0, 1, 1.0, 0.0, 0.0, 0.0 },
{ 0, 0, 2, -2, 2, -13187.0, -1.6, 5736.0, -3.1 },
{ 0, 1, 0, 0, 0, 1426.0, -3.4, 54.0, -0.1 },
/* 11-20 */
{ 0, 1, 2, -2, 2, -517.0, 1.2, 224.0, -0.6 },
{ 0, -1, 2, -2, 2, 217.0, -0.5, -95.0, 0.3 },
{ 0, 0, 2, -2, 1, 129.0, 0.1, -70.0, 0.0 },
{ 2, 0, 0, -2, 0, 48.0, 0.0, 1.0, 0.0 },
{ 0, 0, 2, -2, 0, -22.0, 0.0, 0.0, 0.0 },
{ 0, 2, 0, 0, 0, 17.0, -0.1, 0.0, 0.0 },
{ 0, 1, 0, 0, 1, -15.0, 0.0, 9.0, 0.0 },
{ 0, 2, 2, -2, 2, -16.0, 0.1, 7.0, 0.0 },
{ 0, -1, 0, 0, 1, -12.0, 0.0, 6.0, 0.0 },
{ -2, 0, 0, 2, 1, -6.0, 0.0, 3.0, 0.0 },
/* 21-30 */
{ 0, -1, 2, -2, 1, -5.0, 0.0, 3.0, 0.0 },
{ 2, 0, 0, -2, 1, 4.0, 0.0, -2.0, 0.0 },
{ 0, 1, 2, -2, 1, 4.0, 0.0, -2.0, 0.0 },
{ 1, 0, 0, -1, 0, -4.0, 0.0, 0.0, 0.0 },
{ 2, 1, 0, -2, 0, 1.0, 0.0, 0.0, 0.0 },
{ 0, 0, -2, 2, 1, 1.0, 0.0, 0.0, 0.0 },
{ 0, 1, -2, 2, 0, -1.0, 0.0, 0.0, 0.0 },
{ 0, 1, 0, 0, 2, 1.0, 0.0, 0.0, 0.0 },
{ -1, 0, 0, 1, 1, 1.0, 0.0, 0.0, 0.0 },
{ 0, 1, 2, -2, 0, -1.0, 0.0, 0.0, 0.0 },
/* 31-40 */
{ 0, 0, 2, 0, 2, -2274.0, -0.2, 977.0, -0.5 },
{ 1, 0, 0, 0, 0, 712.0, 0.1, -7.0, 0.0 },
{ 0, 0, 2, 0, 1, -386.0, -0.4, 200.0, 0.0 },
{ 1, 0, 2, 0, 2, -301.0, 0.0, 129.0, -0.1 },
{ 1, 0, 0, -2, 0, -158.0, 0.0, -1.0, 0.0 },
{ -1, 0, 2, 0, 2, 123.0, 0.0, -53.0, 0.0 },
{ 0, 0, 0, 2, 0, 63.0, 0.0, -2.0, 0.0 },
{ 1, 0, 0, 0, 1, 63.0, 0.1, -33.0, 0.0 },
{ -1, 0, 0, 0, 1, -58.0, -0.1, 32.0, 0.0 },
{ -1, 0, 2, 2, 2, -59.0, 0.0, 26.0, 0.0 },
/* 41-50 */
{ 1, 0, 2, 0, 1, -51.0, 0.0, 27.0, 0.0 },
{ 0, 0, 2, 2, 2, -38.0, 0.0, 16.0, 0.0 },
{ 2, 0, 0, 0, 0, 29.0, 0.0, -1.0, 0.0 },
{ 1, 0, 2, -2, 2, 29.0, 0.0, -12.0, 0.0 },
{ 2, 0, 2, 0, 2, -31.0, 0.0, 13.0, 0.0 },
{ 0, 0, 2, 0, 0, 26.0, 0.0, -1.0, 0.0 },
{ -1, 0, 2, 0, 1, 21.0, 0.0, -10.0, 0.0 },
{ -1, 0, 0, 2, 1, 16.0, 0.0, -8.0, 0.0 },
{ 1, 0, 0, -2, 1, -13.0, 0.0, 7.0, 0.0 },
{ -1, 0, 2, 2, 1, -10.0, 0.0, 5.0, 0.0 },
/* 51-60 */
{ 1, 1, 0, -2, 0, -7.0, 0.0, 0.0, 0.0 },
{ 0, 1, 2, 0, 2, 7.0, 0.0, -3.0, 0.0 },
{ 0, -1, 2, 0, 2, -7.0, 0.0, 3.0, 0.0 },
{ 1, 0, 2, 2, 2, -8.0, 0.0, 3.0, 0.0 },
{ 1, 0, 0, 2, 0, 6.0, 0.0, 0.0, 0.0 },
{ 2, 0, 2, -2, 2, 6.0, 0.0, -3.0, 0.0 },
{ 0, 0, 0, 2, 1, -6.0, 0.0, 3.0, 0.0 },
{ 0, 0, 2, 2, 1, -7.0, 0.0, 3.0, 0.0 },
{ 1, 0, 2, -2, 1, 6.0, 0.0, -3.0, 0.0 },
{ 0, 0, 0, -2, 1, -5.0, 0.0, 3.0, 0.0 },
/* 61-70 */
{ 1, -1, 0, 0, 0, 5.0, 0.0, 0.0, 0.0 },
{ 2, 0, 2, 0, 1, -5.0, 0.0, 3.0, 0.0 },
{ 0, 1, 0, -2, 0, -4.0, 0.0, 0.0, 0.0 },
{ 1, 0, -2, 0, 0, 4.0, 0.0, 0.0, 0.0 },
{ 0, 0, 0, 1, 0, -4.0, 0.0, 0.0, 0.0 },
{ 1, 1, 0, 0, 0, -3.0, 0.0, 0.0, 0.0 },
{ 1, 0, 2, 0, 0, 3.0, 0.0, 0.0, 0.0 },
{ 1, -1, 2, 0, 2, -3.0, 0.0, 1.0, 0.0 },
{ -1, -1, 2, 2, 2, -3.0, 0.0, 1.0, 0.0 },
{ -2, 0, 0, 0, 1, -2.0, 0.0, 1.0, 0.0 },
/* 71-80 */
{ 3, 0, 2, 0, 2, -3.0, 0.0, 1.0, 0.0 },
{ 0, -1, 2, 2, 2, -3.0, 0.0, 1.0, 0.0 },
{ 1, 1, 2, 0, 2, 2.0, 0.0, -1.0, 0.0 },
{ -1, 0, 2, -2, 1, -2.0, 0.0, 1.0, 0.0 },
{ 2, 0, 0, 0, 1, 2.0, 0.0, -1.0, 0.0 },
{ 1, 0, 0, 0, 2, -2.0, 0.0, 1.0, 0.0 },
{ 3, 0, 0, 0, 0, 2.0, 0.0, 0.0, 0.0 },
{ 0, 0, 2, 1, 2, 2.0, 0.0, -1.0, 0.0 },
{ -1, 0, 0, 0, 2, 1.0, 0.0, -1.0, 0.0 },
{ 1, 0, 0, -4, 0, -1.0, 0.0, 0.0, 0.0 },
/* 81-90 */
{ -2, 0, 2, 2, 2, 1.0, 0.0, -1.0, 0.0 },
{ -1, 0, 2, 4, 2, -2.0, 0.0, 1.0, 0.0 },
{ 2, 0, 0, -4, 0, -1.0, 0.0, 0.0, 0.0 },
{ 1, 1, 2, -2, 2, 1.0, 0.0, -1.0, 0.0 },
{ 1, 0, 2, 2, 1, -1.0, 0.0, 1.0, 0.0 },
{ -2, 0, 2, 4, 2, -1.0, 0.0, 1.0, 0.0 },
{ -1, 0, 4, 0, 2, 1.0, 0.0, 0.0, 0.0 },
{ 1, -1, 0, -2, 0, 1.0, 0.0, 0.0, 0.0 },
{ 2, 0, 2, -2, 1, 1.0, 0.0, -1.0, 0.0 },
{ 2, 0, 2, 2, 2, -1.0, 0.0, 0.0, 0.0 },
/* 91-100 */
{ 1, 0, 0, 2, 1, -1.0, 0.0, 0.0, 0.0 },
{ 0, 0, 4, -2, 2, 1.0, 0.0, 0.0, 0.0 },
{ 3, 0, 2, -2, 2, 1.0, 0.0, 0.0, 0.0 },
{ 1, 0, 2, -2, 0, -1.0, 0.0, 0.0, 0.0 },
{ 0, 1, 2, 0, 1, 1.0, 0.0, 0.0, 0.0 },
{ -1, -1, 0, 2, 1, 1.0, 0.0, 0.0, 0.0 },
{ 0, 0, -2, 0, 1, -1.0, 0.0, 0.0, 0.0 },
{ 0, 0, 2, -1, 2, -1.0, 0.0, 0.0, 0.0 },
{ 0, 1, 0, 2, 0, -1.0, 0.0, 0.0, 0.0 },
{ 1, 0, -2, -2, 0, -1.0, 0.0, 0.0, 0.0 },
/* 101-106 */
{ 0, -1, 2, 0, 1, -1.0, 0.0, 0.0, 0.0 },
{ 1, 1, 0, -2, 1, -1.0, 0.0, 0.0, 0.0 },
{ 1, 0, -2, 2, 0, -1.0, 0.0, 0.0, 0.0 },
{ 2, 0, 0, 2, 0, 1.0, 0.0, 0.0, 0.0 },
{ 0, 0, 2, 4, 2, -1.0, 0.0, 0.0, 0.0 },
{ 0, 1, 0, 1, 0, 1.0, 0.0, 0.0, 0.0 }
};
/* Number of terms in the series */
const int NT = (int) (sizeof x / sizeof x[0]);
/*--------------------------------------------------------------------*/
/* Interval between fundamental epoch J2000.0 and given date (JC). */
t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
/* --------------------- */
/* Fundamental arguments */
/* --------------------- */
/* Mean longitude of Moon minus mean longitude of Moon's perigee. */
el = eraAnpm(
(485866.733 + (715922.633 + (31.310 + 0.064 * t) * t) * t)
* ERFA_DAS2R + fmod(1325.0 * t, 1.0) * ERFA_D2PI);
/* Mean longitude of Sun minus mean longitude of Sun's perigee. */
elp = eraAnpm(
(1287099.804 + (1292581.224 + (-0.577 - 0.012 * t) * t) * t)
* ERFA_DAS2R + fmod(99.0 * t, 1.0) * ERFA_D2PI);
/* Mean longitude of Moon minus mean longitude of Moon's node. */
f = eraAnpm(
(335778.877 + (295263.137 + (-13.257 + 0.011 * t) * t) * t)
* ERFA_DAS2R + fmod(1342.0 * t, 1.0) * ERFA_D2PI);
/* Mean elongation of Moon from Sun. */
d = eraAnpm(
(1072261.307 + (1105601.328 + (-6.891 + 0.019 * t) * t) * t)
* ERFA_DAS2R + fmod(1236.0 * t, 1.0) * ERFA_D2PI);
/* Longitude of the mean ascending node of the lunar orbit on the */
/* ecliptic, measured from the mean equinox of date. */
om = eraAnpm(
(450160.280 + (-482890.539 + (7.455 + 0.008 * t) * t) * t)
* ERFA_DAS2R + fmod(-5.0 * t, 1.0) * ERFA_D2PI);
/* --------------- */
/* Nutation series */
/* --------------- */
/* Initialize nutation components. */
dp = 0.0;
de = 0.0;
/* Sum the nutation terms, ending with the biggest. */
for (j = NT-1; j >= 0; j--) {
/* Form argument for current term. */
arg = (double)x[j].nl * el
+ (double)x[j].nlp * elp
+ (double)x[j].nf * f
+ (double)x[j].nd * d
+ (double)x[j].nom * om;
/* Accumulate current nutation term. */
s = x[j].sp + x[j].spt * t;
c = x[j].ce + x[j].cet * t;
if (s != 0.0) dp += s * sin(arg);
if (c != 0.0) de += c * cos(arg);
}
/* Convert results from 0.1 mas units to radians. */
*dpsi = dp * U2R;
*deps = de * U2R;
return;
}
/*----------------------------------------------------------------------
**
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** All rights reserved.
**
** This library is derived, with permission, from the International
** Astronomical Union's "Standards of Fundamental Astronomy" library,
** available from http://www.iausofa.org.
**
** The ERFA version is intended to retain identical functionality to
** the SOFA library, but made distinct through different function and
** file names, as set out in the SOFA license conditions. The SOFA
** original has a role as a reference standard for the IAU and IERS,
** and consequently redistribution is permitted only in its unaltered
** state. The ERFA version is not subject to this restriction and
** therefore can be included in distributions which do not support the
** concept of "read only" software.
**
** Although the intent is to replicate the SOFA API (other than
** replacement of prefix names) and results (with the exception of
** bugs; any that are discovered will be fixed), SOFA is not
** responsible for any errors found in this version of the library.
**
** If you wish to acknowledge the SOFA heritage, please acknowledge
** that you are using a library derived from SOFA, rather than SOFA
** itself.
**
**
** TERMS AND CONDITIONS
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1 Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
**
** 2 Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in
** the documentation and/or other materials provided with the
** distribution.
**
** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
** the International Astronomical Union nor the names of its
** contributors may be used to endorse or promote products derived
** from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
** POSSIBILITY OF SUCH DAMAGE.
**
*/
|