1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
.. include:: references.txt
.. _astropy-coordinates-representations:
Using and Designing Coordinate Representations
----------------------------------------------
Points in a 3-d vector space can be represented in different ways, such as
cartesian, spherical polar, cylindrical, and so on. These underlie the way
coordinate data in `astropy.coordinates` is represented, as described in the
:ref:`astropy-coordinates-overview`. Below, we describe how one can use them on
their own, as a way to convert between different representations, including
ones not built-in, and to do simple vector arithmetic.
The built-in representation classes are:
* `~astropy.coordinates.CartesianRepresentation`: cartesian
coordinates ``x``, ``y``, and ``z``
* `~astropy.coordinates.SphericalRepresentation`: spherical
polar coordinates represented by a longitude (``lon``), a latitude
(``lat``), and a distance (``distance``). The latitude is a value ranging
from -90 to 90 degrees.
* `~astropy.coordinates.UnitSphericalRepresentation`:
spherical polar coordinates on a unit sphere, represented by a longitude
(``lon``) and latitude (``lat``)
* `~astropy.coordinates.PhysicsSphericalRepresentation`:
spherical polar coordinates, represented by an inclination (``theta``) and
azimuthal angle (``phi``), and radius ``r``. The inclination goes from 0 to
180 degrees, and is related to the latitude in the
`~astropy.coordinates.SphericalRepresentation` by
``theta = 90 deg - lat``.
* `~astropy.coordinates.CylindricalRepresentation`:
cylindrical polar coordinates, represented by a cylindrical radius
(``rho``), azimuthal angle (``phi``), and height (``z``).
.. Note::
For information about using and changing the representation of
`~astropy.coordinates.SkyCoord` objects, see the
:ref:`astropy-skycoord-representations` section.
Instantiating and converting
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Representation classes are instantiated with `~astropy.units.Quantity`
objects::
>>> from astropy import units as u
>>> from astropy.coordinates.representation import CartesianRepresentation
>>> car = CartesianRepresentation(3 * u.kpc, 5 * u.kpc, 4 * u.kpc)
>>> car
<CartesianRepresentation (x, y, z) in kpc
( 3., 5., 4.)>
Array `~astropy.units.Quantity` objects can also be passed to
representations. They will have the expected shape, which can be changed using
methods with the same names as those for `~numpy.ndarray`, such as ``reshape``,
``ravel``, etc.::
>>> x = u.Quantity([[1., 0., 0.], [3., 5., 3.]], u.m)
>>> y = u.Quantity([[0., 2., 0.], [4., 0., -4.]], u.m)
>>> z = u.Quantity([[0., 0., 3.], [0., 12., -12.]], u.m)
>>> car_array = CartesianRepresentation(x, y, z)
>>> car_array
<CartesianRepresentation (x, y, z) in m
[[( 1., 0., 0.), ( 0., 2., 0.), ( 0., 0., 3.)],
[( 3., 4., 0.), ( 5., 0., 12.), ( 3., -4., -12.)]]>
>>> car_array.shape
(2, 3)
>>> car_array.ravel()
<CartesianRepresentation (x, y, z) in m
[( 1., 0., 0.), ( 0., 2., 0.), ( 0., 0., 3.), ( 3., 4., 0.),
( 5., 0., 12.), ( 3., -4., -12.)]>
Representations can be converted to other representations using the
``represent_as`` method::
>>> from astropy.coordinates.representation import SphericalRepresentation, CylindricalRepresentation
>>> sph = car.represent_as(SphericalRepresentation)
>>> sph # doctest: +FLOAT_CMP
<SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
( 1.03037683, 0.60126422, 7.07106781)>
>>> cyl = car.represent_as(CylindricalRepresentation)
>>> cyl # doctest: +FLOAT_CMP
<CylindricalRepresentation (rho, phi, z) in (kpc, rad, kpc)
( 5.83095189, 1.03037684, 4.)>
All representations can be converted to each other without loss of
information, with the exception of
`~astropy.coordinates.UnitSphericalRepresentation`. This class
is used to store the longitude and latitude of points but does not contain
any distance to the points, and assumes that they are located on a unit and
dimensionless sphere::
>>> from astropy.coordinates.representation import UnitSphericalRepresentation
>>> sph_unit = car.represent_as(UnitSphericalRepresentation)
>>> sph_unit # doctest: +FLOAT_CMP
<UnitSphericalRepresentation (lon, lat) in rad
( 1.03037683, 0.60126422)>
Converting back to cartesian, the absolute scaling information has been
removed, and the points are still located on a unit sphere:
>>> sph_unit = car.represent_as(UnitSphericalRepresentation)
>>> sph_unit.represent_as(CartesianRepresentation) # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) [dimensionless]
( 0.42426407, 0.70710678, 0.56568542)>
Array values and numpy array method analogs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Array `~astropy.units.Quantity` objects can also be passed to representations,
and such representations can be sliced, reshaped, etc., using the same
methods as are available to `~numpy.ndarray`::
>>> import numpy as np
>>> x = np.linspace(0., 5., 6)
>>> y = np.linspace(10., 15., 6)
>>> z = np.linspace(20., 25., 6)
>>> car_array = CartesianRepresentation(x * u.m, y * u.m, z * u.m)
>>> car_array
<CartesianRepresentation (x, y, z) in m
[( 0., 10., 20.), ( 1., 11., 21.), ( 2., 12., 22.),
( 3., 13., 23.), ( 4., 14., 24.), ( 5., 15., 25.)]>
>>> car_array[2]
<CartesianRepresentation (x, y, z) in m
( 2., 12., 22.)>
>>> car_array.reshape(3, 2)
<CartesianRepresentation (x, y, z) in m
[[( 0., 10., 20.), ( 1., 11., 21.)],
[( 2., 12., 22.), ( 3., 13., 23.)],
[( 4., 14., 24.), ( 5., 15., 25.)]]>
.. _astropy-coordinates-representations-arithmetic:
Vector arithmetic
^^^^^^^^^^^^^^^^^
Representations support basic vector arithmetic, in particular taking the norm,
multiplying with and dividing by quantities, taking dot and cross products, as
well as adding, subtracting, summing and taking averages of representations,
and multiplying with matrices.
.. Note:: All arithmetic except the matrix multiplication works with
non-cartesian representations as well. For taking the norm, multiplication,
and division this uses just the non-angular components, while for the other
operations the representation is converted to cartesian internally before
the operation is done, and the result is converted back to the original
representation. Hence, for optimal speed it may be best to work using
cartesian representations.
To see how the operations work, consider the following examples::
>>> car_array = CartesianRepresentation([[1., 0., 0.], [3., 5., 3.]] * u.m,
... [[0., 2., 0.], [4., 0., -4.]] * u.m,
... [[0., 0., 3.], [0.,12.,-12.]] * u.m)
>>> car_array
<CartesianRepresentation (x, y, z) in m
[[( 1., 0., 0.), ( 0., 2., 0.), ( 0., 0., 3.)],
[( 3., 4., 0.), ( 5., 0., 12.), ( 3., -4., -12.)]]>
>>> car_array.norm() # doctest: +FLOAT_CMP
<Quantity [[ 1., 2., 3.],
[ 5., 13., 13.]] m>
>>> car_array / car_array.norm() # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) [dimensionless]
[[( 1. , 0. , 0. ),
( 0. , 1. , 0. ),
( 0. , 0. , 1. )],
[( 0.6 , 0.8 , 0. ),
( 0.38461538, 0. , 0.92307692),
( 0.23076923, -0.30769231, -0.92307692)]]>
>>> (car_array[1] - car_array[0]) / (10. * u.s) # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) in m / s
[( 0.2, 0.4, 0. ), ( 0.5, -0.2, 1.2), ( 0.3, -0.4, -1.5)]>
>>> car_array.sum() # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) in m
( 12., 2., 3.)>
>>> car_array.mean(axis=0) # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) in m
[( 2. , 2., 0. ), ( 2.5, 1., 6. ), ( 1.5, -2., -4.5)]>
>>> unit_x = UnitSphericalRepresentation(0.*u.deg, 0.*u.deg)
>>> unit_y = UnitSphericalRepresentation(90.*u.deg, 0.*u.deg)
>>> unit_z = UnitSphericalRepresentation(0.*u.deg, 90.*u.deg)
>>> car_array.dot(unit_x) # doctest: +FLOAT_CMP
<Quantity [[ 1., 0., 0.],
[ 3., 5., 3.]] m>
>>> car_array.dot(unit_y) # doctest: +FLOAT_CMP
<Quantity [[ 6.12323400e-17, 2.00000000e+00, 0.00000000e+00],
[ 4.00000000e+00, 3.06161700e-16, -4.00000000e+00]] m>
>>> car_array.dot(unit_z) # doctest: +FLOAT_CMP
<Quantity [[ 6.12323400e-17, 0.00000000e+00, 3.00000000e+00],
[ 1.83697020e-16, 1.20000000e+01, -1.20000000e+01]] m>
>>> car_array.cross(unit_x) # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) in m
[[( 0., 0., 0.), ( 0., 0., -2.), ( 0., 3., 0.)],
[( 0., 0., -4.), ( 0., 12., 0.), ( 0., -12., 4.)]]>
>>> from astropy.coordinates.matrix_utilities import rotation_matrix
>>> rotation = rotation_matrix(90 * u.deg, axis='z')
>>> rotation # doctest: +FLOAT_CMP
array([[ 6.12323400e-17, 1.00000000e+00, 0.00000000e+00],
[ -1.00000000e+00, 6.12323400e-17, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
>>> car_array.transform(rotation) # doctest: +FLOAT_CMP
<CartesianRepresentation (x, y, z) in m
[[( 6.12323400e-17, -1.00000000e+00, 0.),
( 2.00000000e+00, 1.22464680e-16, 0.),
( 0.00000000e+00, 0.00000000e+00, 3.)],
[( 4.00000000e+00, -3.00000000e+00, 0.),
( 3.06161700e-16, -5.00000000e+00, 12.),
( -4.00000000e+00, -3.00000000e+00, -12.)]]>
.. _astropy-coordinates-create-repr:
Creating your own representations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To create your own representation class, your class must inherit from the
``BaseRepresentation`` class. In addition the following must be defined:
* ``__init__`` method:
Has a signature like ``__init__(self, comp1, comp2, comp3, copy=True)``
for inputting the representation component values.
* ``from_cartesian`` class method:
Takes a `~astropy.coordinates.CartesianRepresentation` object and
returns an instance of your class.
* ``to_cartesian`` method:
Returns a `~astropy.coordinates.CartesianRepresentation` object.
* ``attr_classes`` class attribute (``OrderedDict``):
Defines the initializer class for each component.In most cases this
class should be derived from `~astropy.units.Quantity`. In particular
these class initializers must take the value as the first argument and
accept a ``unit`` keyword which takes a `~astropy.units.Unit`
initializer or ``None`` to indicate no unit. Also not that the keys of
this dictionary are treated as the names of the components for this
representation, with the default ordered given in the order they
appear as keys.
* ``recommended_units`` dictionary (optional):
Maps component names to the recommended unit to convert the values of
that component to. Can be ``None`` (or missing) to indicate there is
no preferred unit. If this dictionary is not defined, no conversion
of components to particular units will occur.
In pseudo-code, this means that your class will look like::
class MyRepresentation(BaseRepresentation):
attr_classes = OrderedDict([('comp1', ComponentClass1),
('comp2', ComponentClass2),
('comp3', ComponentClass3)])
# recommended_units is optional
recommended_units = {'comp1': u.unit1, 'comp2': u.unit2, 'comp3': u.unit3}
def __init__(self, ...):
...
@classmethod
def from_cartesian(self, cartesian):
...
return MyRepresentation(...)
def to_cartesian(self):
...
return CartesianRepresentation(...)
Once you do this, you will then automatically be able to call
``represent_as`` to convert other representations to/from your representation
class. Your representation will also be available for use in |skycoord|
and all frame classes.
A representation class may also have a ``_unit_representation`` attribute
(although it is not required). This attribute points to the appropriate
"unit" representation (i.e., a representation that is dimensionless). This is
probably only meaningful for subclasses of
`~astropy.coordinates.SphericalRepresentation`, where it is assumed that it
will be a subclass of `~astropy.coordinates.UnitSphericalRepresentation`.
|