1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
|
.. include:: references.txt
.. _astropy-coordinates-high-level:
Using the SkyCoord High-level Class
-----------------------------------
The |SkyCoord| class provides a simple and flexible user interface for
celestial coordinate representation, manipulation, and transformation between
coordinate frames. This is a high-level class that serves as a wrapper
around the low-level coordinate frame classes like `~astropy.coordinates.ICRS`
and `~astropy.coordinates.FK5` which do most of the heavy lifting.
The key distinctions between |SkyCoord| and the low-level classes
(:doc:`frames`) are as follows:
- The |SkyCoord| object can maintain the union of frame attributes for all
built-in and user-defined coordinate frames in the
``astropy.coordinates.frame_transform_graph``. Individual frame classes hold
only the required attributes (e.g. equinox, observation time or observer
location) for that frame. This means that a transformation from
`~astropy.coordinates.FK4` (with equinox and observation time) to
`~astropy.coordinates.ICRS` (with neither) and back to
`~astropy.coordinates.FK4` via the low-level classes would not remember the
original equinox and observation time. Since the |SkyCoord| object stores
all attributes, such a round-trip transformation will return to the same
coordinate object.
- The |SkyCoord| class is more flexible with inputs to accommodate a wide
variety of user preferences and available data formats.
- The |SkyCoord| class has a number of convenience methods that are useful
in typical analysis.
- At present, |SkyCoord| objects can use only coordinate frames that have
transformations defined in the ``astropy.coordinates.frame_transform_graph``
transform graph object.
Creating SkyCoord objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The |SkyCoord| class accepts a wide variety of inputs for initialization.
At a minimum these must provide one or more celestial coordinate values
with unambiguous units. Typically one also specifies the coordinate
frame, though this is not required.
Common patterns are shown below. In this description the values in upper
case like ``COORD`` or ``FRAME`` represent inputs which are described in detail
in the `Initialization Syntax`_ section. Elements in square brackets like
``[unit=UNIT]`` are optional.
::
SkyCoord(COORD, [FRAME], keyword_args ...)
SkyCoord(LON, LAT, [frame=FRAME], [unit=UNIT], keyword_args ...)
SkyCoord([FRAME], <lon_attr>=LON, <lat_attr>=LAT, keyword_args ...)
The examples below illustrate common ways of initializing a |SkyCoord| object.
These all reflect initializing using spherical coordinates, which is the
default for all built-in frames. In order to understand working with coordinates
using a different representation such as cartesian or cylindrical, see the
section on `Representations`_. First some imports::
>>> from astropy.coordinates import SkyCoord # High-level coordinates
>>> from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames
>>> from astropy.coordinates import Angle, Latitude, Longitude # Angles
>>> import astropy.units as u
>>> import numpy as np
The coordinate values and frame specification can now be provided using
positional and keyword arguments. First we show positional arguments for
RA and Dec::
>>> SkyCoord(10, 20, unit='deg') # Defaults to ICRS
<SkyCoord (ICRS): (ra, dec) in deg
( 10., 20.)>
>>> SkyCoord([1, 2, 3], [-30, 45, 8], frame='icrs', unit='deg')
<SkyCoord (ICRS): (ra, dec) in deg
[( 1., -30.), ( 2., 45.), ( 3., 8.)]>
Notice that the first example above does not explicitly give a frame. In
this case, the default is taken to be the ICRS system (approximately
correct for "J2000" equatorial coordinates). It is always better to
explicitly specify the frame when it is known to be ICRS, however, as
anyone reading the code will be better able to understand the intent.
String inputs in common formats are acceptable, and the frame can be supplied
as either a class type like `~astropy.coordinates.FK4`, an instance of a
frame class, a `~astropy.coordinates.SkyCoord` instance (from which the frame
will be extracted), or the lower-case version of a frame name as a string,
e.g. ``"fk4"``::
>>> coords = ["1:12:43.2 +1:12:43", "1 12 43.2 +1 12 43"]
>>> sc = SkyCoord(coords, frame=FK4, unit=(u.hourangle, u.deg), obstime="J1992.21")
>>> sc = SkyCoord(coords, frame=FK4(obstime="J1992.21"), unit=(u.hourangle, u.deg))
>>> sc = SkyCoord(coords, frame='fk4', unit='hourangle,deg', obstime="J1992.21")
>>> sc = SkyCoord("1h12m43.2s", "+1d12m43s", frame=Galactic) # Units from strings
>>> sc = SkyCoord("1h12m43.2s +1d12m43s", frame=Galactic) # Units from string
>>> sc = SkyCoord(l="1h12m43.2s", b="+1d12m43s", frame='galactic')
>>> sc = SkyCoord("1h12.72m +1d12.71m", frame='galactic')
Note that frame instances with data and `~astropy.coordinates.SkyCoord` instances
can only be passed as frames using the ``frame=`` keyword argument and not as
positional arguments.
For representations that have ``ra`` and ``dec`` attributes one can supply a coordinate
string in a number of other common formats. Examples include::
>>> sc = SkyCoord("15h17+89d15")
>>> sc = SkyCoord("275d11m15.6954s+17d59m59.876s")
>>> sc = SkyCoord("8 00 -5 00.6", unit=(u.hour, u.deg))
>>> sc = SkyCoord("J080000.00-050036.00", unit=(u.hour, u.deg))
>>> sc = SkyCoord("J1874221.31+122328.03", unit=u.deg)
Astropy `~astropy.units.Quantity`-type objects are acceptable and encouraged
as a form of input::
>>> ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle
>>> dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity
>>> sc = SkyCoord(ra, dec, frame='icrs')
>>> sc = SkyCoord(ra=ra, dec=dec, frame=ICRS, obstime='2001-01-02T12:34:56')
Finally it is possible to initialize from a low-level coordinate frame object.
>>> c = FK4(1 * u.deg, 2 * u.deg)
>>> sc = SkyCoord(c, obstime='J2010.11', equinox='B1965') # Override defaults
A key subtlety highlighted here is that when low-level objects are created they have
certain default attribute values. For instance the `~astropy.coordinates.FK4`
frame uses ``equinox='B1950.0`` and ``obstime=equinox`` as defaults. If
this object is used to initialize a |SkyCoord| it is possible to override
the low-level object attributes that were not explicitly set. If the
coordinate above were created with
``c = FK4(1 * u.deg, 2 * u.deg, equinox='B1960')`` then creating a |SkyCoord|
with a different ``equinox`` would raise an exception.
Initialization Syntax
"""""""""""""""""""""
For spherical representations, which are the most common and are the default
input format for all built-in frames, the syntax for |SkyCoord| is given
below::
SkyCoord(COORD, [FRAME | frame=FRAME], [unit=UNIT], keyword_args ...)
SkyCoord(LON, LAT, [DISTANCE], [FRAME | frame=FRAME], [unit=UNIT], keyword_args ...)
SkyCoord([FRAME | frame=FRAME], <lon_name>=LON, <lat_name>=LAT, [unit=UNIT],
keyword_args ...)
In the above description, elements in all capital letters (e.g. ``FRAME``)
describes a user input of that element type. Elements in square brackets are
optional. For non-spherical inputs see the `Representations`_ section.
**LON**, **LAT**
Longitude and latitude value can be specified as separate positional arguments.
The following options are available for longitude and latitude:
- Single angle value:
- |Quantity| object
- Plain numeric value with ``unit`` keyword specifying the unit
- Angle string which is formatted for :ref:`angle-creation` of
|Longitude| or |Latitude| objects
- List or |Quantity| array or numpy array of angle values
- |Angle|, |Longitude|, or |Latitude| object, which can be scalar or
array-valued
**DISTANCE**
The distance to the object from the frame center can be optionally specified:
- Single distance value:
- |Quantity| or `~astropy.coordinates.Distance` object
- Plain numeric value for a dimensionless distance
- Plain numeric value with ``unit`` keyword specifying the unit
- List or |Quantity| or `~astropy.coordinates.Distance` array or numpy array of
angle values
**COORD**
This input form uses a single object to supply coordinate data. For the case
of spherical coordinate frames, the coordinate can include one or more
longitude and latitude pairs in one of the following ways:
- Single coordinate string with a LON and LAT value separated by a space. The
respective values can be any string which is formatted for
:ref:`angle-creation` of |Longitude| or |Latitude| objects, respectively.
- List or numpy array of such coordinate strings
- List of (LON, LAT) tuples, where each LON and LAT are scalars (not arrays)
- ``N x 2`` numpy or |Quantity| array of values where the first column is
longitude and the second column is latitude, e.g.
``[[270, -30], [355, +85]] * u.deg``
- List of (LON, LAT, DISTANCE) tuples
- ``N x 3`` numpy or |Quantity| array of values where columns are
longitude, latitude, and distance respectively.
The input can also be more generalized objects that are not necessarily
represented in the standard spherical coordinates:
- Coordinate frame object, e.g. ``FK4(1*u.deg, 2*u.deg, obstime='J2012.2')``
- |SkyCoord| object (which just makes a copy of the object)
- `~astropy.coordinates.BaseRepresentation` subclass object like
`~astropy.coordinates.SphericalRepresentation`,
`~astropy.coordinates.CylindricalRepresentation`, or
`~astropy.coordinates.CartesianRepresentation`.
**FRAME**
This can be a `~astropy.coordinates.BaseCoordinateFrame` frame class, an
instance of such a class, or the corresponding string alias. The frame
classes that are built in to astropy are `~astropy.coordinates.ICRS`,
`~astropy.coordinates.FK5`, `~astropy.coordinates.FK4`,
`~astropy.coordinates.FK4NoETerms`, `~astropy.coordinates.Galactic`, and
`~astropy.coordinates.AltAz`. The string aliases are simply lower-case
versions of the class name.
If the frame is not supplied then you will see a special ``ICRS``
identifier. This indicates that the frame is unspecified and operations
that require comparing coordinates (even within that object) are not allowed.
**unit=UNIT**
The unit specifier can be one of the following:
- `~astropy.units.Unit` object which is an angular unit that is equivalent to
``Unit('radian')``
- Single string with a valid angular unit name
- 2-tuple of `~astropy.units.Unit` objects or string unit names specifying the
LON and LAT unit respectively, e.g. ``('hourangle', 'degree')``
- Single string with two unit names separated by a comma, e.g. ``'hourangle,degree'``
If only a single unit is provided then it applies to both LON and LAT.
**Other keyword arguments**
In lieu of positional arguments to specify the longitude and latitude, the
frame-specific names can be used as keyword arguments:
*ra*, *dec*: **LON**, **LAT** values, optional
RA and Dec for frames where these are representation, including [FIXME]
`~astropy.coordinates.ICRS`, `~astropy.coordinates.FK5`,
`~astropy.coordinates.FK4`, and `~astropy.coordinates.FK4NoETerms`.
*l*, *b*: **LON**, **LAT** values, optional
Galactic ``l`` and ``b`` for the `~astropy.coordinates.Galactic` frame.
The following keywords can be specified for any frame:
*distance*: valid `~astropy.coordinates.Distance` initializer, optional
Distance from reference from center to source.
*obstime*: valid `~astropy.time.Time` initializer, optional
Time of observation
*equinox*: valid `~astropy.time.Time` initializer, optional
Coordinate frame equinox
If custom user-defined frames are included in the transform graph and they
have additional frame attributes, then those attributes can also be
set via corresponding keyword args in the |SkyCoord| initialization.
.. _astropy-coordinates-array-operations:
Array operations
^^^^^^^^^^^^^^^^^
It is possible to store arrays of coordinates in a |SkyCoord| object, and
manipulations done in this way will be orders of magnitude faster than
looping over a list of individual |SkyCoord| objects::
>>> ra = np.linspace(0, 36000, 1001) * u.deg
>>> dec = np.linspace(-90, 90, 1001) * u.deg
>>> sc_list = [SkyCoord(r, d, frame='icrs') for r, d in zip(ra, dec)] # doctest: +SKIP
>>> timeit sc_gal_list = [c.galactic for c in sc_list] # doctest: +SKIP
1 loops, best of 3: 20.4 s per loop
>>> sc = SkyCoord(ra, dec, frame='icrs')
>>> timeit sc_gal = sc.galactic # doctest: +SKIP
100 loops, best of 3: 21.8 ms per loop
In addition to vectorized transformations, you can do the usual array slicing,
dicing, and selection, using the same methods and attributes that one uses for
`~numpy.ndarray` instances::
>>> north_mask = sc.dec > 0
>>> sc_north = sc[north_mask]
>>> len(sc_north)
500
>>> sc[2:4] # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
[( 72., -89.64), ( 108., -89.46)]>
>>> sc[500] # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
( 0., 0.)>
>>> sc[0:-1:100].reshape(2, 5) # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
[[( 0., -90.), ( 0., -72.), ( 0., -54.), ( 0., -36.), ( 0., -18.)],
[( 0., 0.), ( 0., 18.), ( 0., 36.), ( 0., 54.), ( 0., 72.)]]>
Note that similarly to the `~numpy.ndarray` methods, all but ``flatten`` try to
use new views of the data, with the data copied only if that it is impossible
(as discussed, e.g., in the documentation for numpy :func:`~numpy.reshape`).
Attributes
^^^^^^^^^^^
The |SkyCoord| object has a number of useful attributes which come in handy.
By digging through these we'll learn a little bit about |SkyCoord| and how it
works.
To begin (if you don't know already) one of the most important tools for
learning about attributes and methods of objects is "TAB-discovery". From
within IPython you can type an object name, the period, and then the <TAB> key
to see what's available. This can often be faster than reading the
documentation::
>>> sc = SkyCoord(1, 2, frame='icrs', unit='deg', obstime='2013-01-02 14:25:36')
>>> sc.<TAB> # doctest: +SKIP
sc.T sc.match_to_catalog_3d
sc.altaz sc.match_to_catalog_sky
sc.barycentrictrueecliptic sc.name
sc.cartesian sc.ndim
sc.cirs sc.obsgeoloc
sc.copy sc.obsgeovel
sc.data sc.obstime
sc.dec sc.obswl
sc.default_representation sc.position_angle
sc.diagonal sc.precessedgeocentric
sc.distance sc.pressure
sc.equinox sc.ra
sc.fk4 sc.ravel
sc.fk4noeterms sc.realize_frame
sc.fk5 sc.relative_humidity
sc.flatten sc.represent_as
sc.frame sc.representation
sc.frame_attributes sc.representation_component_names
sc.frame_specific_representation_info sc.representation_component_units
sc.from_name sc.representation_info
sc.from_pixel sc.reshape
sc.galactic sc.roll
sc.galactocentric sc.search_around_3d
sc.galcen_dec sc.search_around_sky
sc.galcen_distance sc.separation
sc.galcen_ra sc.separation_3d
sc.gcrs sc.shape
sc.geocentrictrueecliptic sc.size
sc.get_constellation sc.skyoffset_frame
sc.get_frame_attr_names sc.spherical
sc.guess_from_table sc.spherical_offsets_to
sc.has_data sc.squeeze
sc.hcrs sc.supergalactic
sc.heliocentrictrueecliptic sc.swapaxes
sc.icrs sc.take
sc.info sc.temperature
sc.is_equivalent_frame sc.to_pixel
sc.is_frame_attr_default sc.to_string
sc.is_transformable_to sc.transform_to
sc.isscalar sc.transpose
sc.itrs sc.z_sun
sc.location
Here we see a bunch of stuff there but much of it should be recognizable or
easily guessed. The most obvious may be the longitude and latitude attributes
which are named ``ra`` and ``dec`` for the ``ICRS`` frame::
>>> sc.ra
<Longitude 1.0 deg>
>>> sc.dec
<Latitude 2.0 deg>
Next notice that all the built-in frame names ``icrs``, ``galactic``, ``fk5``
``fk4``, and ``fk4noeterms`` are there. Through the magic of Python
properties, accessing these attributes calls the object
`~astropy.coordinates.SkyCoord.transform_to` method appropriately and returns a
new |SkyCoord| object in the requested frame::
>>> sc_gal = sc.galactic
>>> sc_gal # doctest: +FLOAT_CMP
<SkyCoord (Galactic): (l, b) in deg
( 99.63785528, -58.70969293)>
Other attributes you should recognize are ``distance``, ``equinox``,
``obstime``, ``shape``.
Digger deeper
"""""""""""""
*[Casual users can skip this section]*
After transforming to Galactic the longitude and latitude values are now
labeled ``l`` and ``b``, following the normal convention for Galactic
coordinates. How does the object know what to call its values? The answer
lies in some less-obvious attributes::
>>> sc_gal.representation_component_names
OrderedDict([('l', 'lon'), ('b', 'lat'), ('distance', 'distance')])
>>> sc_gal.representation_component_units
OrderedDict([('l', Unit("deg")), ('b', Unit("deg"))])
>>> sc_gal.representation
<class 'astropy.coordinates.representation.SphericalRepresentation'>
Together these tell the object that ``l`` and ``b`` are the longitude and
latitude, and that they should both be displayed in units of degrees as
a spherical-type coordinate (and not, e.g. a cartesian coordinate).
Furthermore the frame's ``representation_component_names`` attribute defines
the coordinate keyword arguments that |SkyCoord| will accept.
Another important attribute is ``frame_attr_names``, which defines the
additional attributes that are required to fully define the frame::
>>> sc_fk4 = SkyCoord(1, 2, frame='fk4', unit='deg')
>>> sc_fk4.get_frame_attr_names()
OrderedDict([('equinox', <Time object: scale='tai' format='byear_str' value=B1950.000>), ('obstime', None)])
The key values correspond to the defaults if no explicit value is provide by
the user. This example shows that the `~astropy.coordinates.FK4` frame has two
attributes ``equinox`` and ``obstime`` that are required to fully define the
frame.
Some trickery is happening here because many of these attributes are
actually owned by the underlying coordinate ``frame`` object which does much of
the real work. This is the middle layer in the three-tiered system of objects:
representation (spherical, cartesian, etc.), frame (aka low-level frame class),
and |SkyCoord| (aka high-level class; see :ref:`astropy-coordinates-overview`
and :ref:`astropy-coordinates-definitions`)::
>>> sc.frame
<ICRS Coordinate: (ra, dec) in deg
( 1., 2.)>
>>> sc.has_data is sc.frame.has_data
True
>>> sc.frame.<TAB> # doctest: +SKIP
sc.frame.T sc.frame.ra
sc.frame.cartesian sc.frame.ravel
sc.frame.copy sc.frame.realize_frame
sc.frame.data sc.frame.represent_as
sc.frame.dec sc.frame.representation
sc.frame.default_representation sc.frame.representation_component_names
sc.frame.diagonal sc.frame.representation_component_units
sc.frame.distance sc.frame.representation_info
sc.frame.flatten sc.frame.reshape
sc.frame.frame_attributes sc.frame.separation
sc.frame.frame_specific_representation_info sc.frame.separation_3d
sc.frame.get_frame_attr_names sc.frame.shape
sc.frame.has_data sc.frame.size
sc.frame.is_equivalent_frame sc.frame.spherical
sc.frame.is_frame_attr_default sc.frame.squeeze
sc.frame.is_transformable_to sc.frame.swapaxes
sc.frame.isscalar sc.frame.take
sc.frame.name sc.frame.transform_to
sc.frame.ndim sc.frame.transpose
>>> sc.frame.name
'icrs'
The |SkyCoord| object exposes the ``frame`` object attributes as its own. Though
it might seem a tad confusing at first, this a good thing because it makes
|SkyCoord| objects and `~astropy.coordinates.BaseCoordinateFrame` objects
behave very similarly and most routines can accept either one as input without
much bother (duck typing!).
The lowest layer in the stack is the abstract
`~astropy.coordinates.UnitSphericalRepresentation` object:
>>> sc_gal.frame.data # doctest: +FLOAT_CMP
<UnitSphericalRepresentation (lon, lat) in rad
( 1.73900863, -1.02467744)>
Transformations
^^^^^^^^^^^^^^^^^
The topic of transformations is covered in detail in the section on
:ref:`astropy-coordinates-transforming`.
For completeness here we will give some simple examples. Once you've defined
your coordinates and the reference frame, you can transform from that frame to
another frame. You can do this a few different ways: if you just want the
default version of that frame, you can use attribute-style access (as mentioned
previously). For more control, you can use the
`~astropy.coordinates.SkyCoord.transform_to` method, which accepts a frame
name, frame class, frame instance, or |SkyCoord|::
>>> from astropy.coordinates import FK5
>>> sc = SkyCoord(1, 2, frame='icrs', unit='deg')
>>> sc.galactic # doctest: +FLOAT_CMP
<SkyCoord (Galactic): (l, b) in deg
( 99.63785528, -58.70969293)>
>>> sc.transform_to('fk5') # Same as sc.fk5 and sc.transform_to(FK5) # doctest: +FLOAT_CMP
<SkyCoord (FK5: equinox=J2000.000): (ra, dec) in deg
( 1.00000656, 2.00000243)>
>>> sc.transform_to(FK5(equinox='J1975')) # Transform to FK5 with a different equinox # doctest: +FLOAT_CMP
<SkyCoord (FK5: equinox=J1975.000): (ra, dec) in deg
( 0.67967282, 1.86083014)>
Transforming to a |SkyCoord| instance is an easy way of ensuring that two
coordinates are in the exact same reference frame::
>>> sc2 = SkyCoord(3, 4, frame='fk4', unit='deg', obstime='J1978.123', equinox='B1960.0')
>>> sc.transform_to(sc2) # doctest: +FLOAT_CMP
<SkyCoord (FK4: equinox=B1960.000, obstime=J1978.123): (ra, dec) in deg
( 0.48726331, 1.77731617)>
.. _astropy-skycoord-representations:
Representations
^^^^^^^^^^^^^^^^
So far we have been using a spherical coordinate representation in the all the
examples, and this is the default for the built-in frames. Frequently it is
convenient to initialize or work with a coordinate using a different
representation such as cartesian or cylindrical. In this section we discuss
how to initialize an object using a different representation and how to
change the representation of an object. For more information about
representation objects themselves see :ref:`astropy-coordinates-representations`.
Initialization
"""""""""""""""
Most of what you need to know can be inferred from the examples below and
by extrapolating the previous documentation for spherical representations.
Initialization just requires setting the ``representation`` keyword and
supplying the corresponding components for that representation::
>>> c = SkyCoord(x=1, y=2, z=3, unit='kpc', representation='cartesian')
>>> c
<SkyCoord (ICRS): (x, y, z) in kpc
( 1., 2., 3.)>
>>> c.x, c.y, c.z
(<Quantity 1.0 kpc>, <Quantity 2.0 kpc>, <Quantity 3.0 kpc>)
Other variations include::
>>> SkyCoord(1, 2*u.deg, 3, representation='cylindrical')
<SkyCoord (ICRS): (rho, phi, z) in (, deg, )
( 1., 2., 3.)>
>>> SkyCoord(rho=1*u.km, phi=2*u.deg, z=3*u.m, representation='cylindrical')
<SkyCoord (ICRS): (rho, phi, z) in (km, deg, m)
( 1., 2., 3.)>
>>> SkyCoord(rho=1, phi=2, z=3, unit=(u.km, u.deg, u.m), representation='cylindrical')
<SkyCoord (ICRS): (rho, phi, z) in (km, deg, m)
( 1., 2., 3.)>
>>> SkyCoord(1, 2, 3, unit=(None, u.deg, None), representation='cylindrical')
<SkyCoord (ICRS): (rho, phi, z) in (, deg, )
( 1., 2., 3.)>
In general terms, the allowed syntax is as follows::
SkyCoord(COORD, [FRAME | frame=FRAME], [unit=UNIT], [representation=REPRESENTATION],
keyword_args ...)
SkyCoord(COMP1, COMP2, [COMP3], [FRAME | frame=FRAME], [unit=UNIT],
[representation=REPRESENTATION], keyword_args ...)
SkyCoord([FRAME | frame=FRAME], <comp1_name>=COMP1, <comp2_name>=COMP2,
<comp3_name>=COMP3, [representation=REPRESENTATION], [unit=UNIT],
keyword_args ...)
In this case the ``keyword_args`` now includes the element
``representation=REPRESENTATION``. In the above description, elements in all
capital letters (e.g. ``FRAME``) describes a user input of that element type.
Elements in square brackets are optional.
**COMP1**, **COMP2**, **COMP3**
Component values can be specified as separate positional arguments or as
keyword arguments. In this formalism the exact types of allowed input depend
on the details of the representation. In general the following input forms
are supported:
- Single value:
- Component class object
- Plain numeric value with ``unit`` keyword specifying the unit
- List or component class array or numpy array of values
Each representation component has a specified class (the "component class")
which is used to convert generic input data into a pre-defined object
class with a certain unit. These component classes are expected to be
subclasses of the `~astropy.units.Quantity` class.
**COORD**
This input form uses a single object to supply coordinate data. The coordinate
can specify one or more coordinate positions as follows:
- List of ``(COMP1, .., COMP<M>)`` tuples, where each component is a scalar (not
array) and there are ``M`` components in the representation. Typically
there are 3 components, but some
(e.g. `~astropy.coordinates.UnitSphericalRepresentation`)
can have fewer.
- ``N x M`` numpy or |Quantity| array of values, where ``N`` is the number
of coordinates and ``M`` is the number of components.
**REPRESENTATION**
The representation can be supplied either as a
`~astropy.coordinates.representation.BaseRepresentation` class (e.g.
`~astropy.coordinates.CartesianRepresentation` or as a string name which is
simply the class name in lower case and without the final ``representation``
(e.g. ``'cartesian'``).
The rest of the inputs for creating a |SkyCoord| object in the general case are
the same as for spherical.
Details
"""""""""
The available set of representations is dynamic and may change depending what
representation classes have been defined. The built-in representations are:
===================== =======================================================
Name Class
===================== =======================================================
``spherical`` `~astropy.coordinates.SphericalRepresentation`
``unitspherical`` `~astropy.coordinates.UnitSphericalRepresentation`
``physicsspherical`` `~astropy.coordinates.PhysicsSphericalRepresentation`
``cartesian`` `~astropy.coordinates.CartesianRepresentation`
``cylindrical`` `~astropy.coordinates.CylindricalRepresentation`
===================== =======================================================
Each frame knows about all the available representations, but different
frames may use different names for the same components. A common example
is that the `~astropy.coordinates.Galactic` frame uses ``l`` and ``b``
instead of ``ra`` and ``dec`` for the ``lon`` and ``lat`` components of
the `~astropy.coordinates.SphericalRepresentation`.
For a particular frame, in order to see the full list of representations
and how it names all the components, first make an instance of that frame
without any data, and then print the ``representation_info`` property::
>>> ICRS().representation_info # doctest: +SKIP
{astropy.coordinates.representation.CartesianRepresentation:
{'names': ('x', 'y', 'z'),
'units': (None, None, None)},
astropy.coordinates.representation.SphericalRepresentation:
{'names': ('ra', 'dec', 'distance'),
'units': (Unit("deg"), Unit("deg"), None)},
astropy.coordinates.representation.UnitSphericalRepresentation:
{'names': ('ra', 'dec'),
'units': (Unit("deg"), Unit("deg"))},
astropy.coordinates.representation.PhysicsSphericalRepresentation:
{'names': ('phi', 'theta', 'r'),
'units': (Unit("deg"), Unit("deg"), None)},
astropy.coordinates.representation.CylindricalRepresentation:
{'names': ('rho', 'phi', 'z'),
'units': (None, Unit("deg"), None)}
}
This is a bit messy but it shows that for each representation there is a
``dict`` with two keys:
- ``names``: defines how each component is named in that frame
- ``units``: defines the units of each component when output, where ``None``
means to not force a particular unit.
For a particular coordinate instance you can use the ``representation``
attribute in conjunction with the ``representation_component_names`` attribute
to figure out what keywords are accepted by a particular class object. The
former will be the representation class the system is expressed in (e.g.,
spherical for equatorial frames), and the latter will be a dictionary mapping
names for that frame to the component name on the representation class::
>>> import astropy.units as u
>>> icrs = ICRS(1*u.deg, 2*u.deg)
>>> icrs.representation
<class 'astropy.coordinates.representation.SphericalRepresentation'>
>>> icrs.representation_component_names
OrderedDict([('ra', 'lon'), ('dec', 'lat'), ('distance', 'distance')])
Changing representation
""""""""""""""""""""""""""
The representation of the coordinate object can be changed, as shown
below. This actually does *nothing* to the object internal data which
stores the coordinate values, but it changes the external view of that
data in two ways:
- The object prints itself in accord with the new representation.
- The available attributes change to match those of the new representation
(e.g. from ``ra, dec, distance`` to ``x, y, z``).
Setting the ``representation`` thus changes a *property* of the object (how it
appears) without changing the intrinsic object itself which represents a point
in 3d space.
::
>>> c = SkyCoord(x=1, y=2, z=3, unit='kpc', representation='cartesian')
>>> c
<SkyCoord (ICRS): (x, y, z) in kpc
( 1., 2., 3.)>
>>> c.representation = 'cylindrical'
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (rho, phi, z) in (kpc, deg, kpc)
( 2.23606798, 63.43494882, 3.)>
>>> c.phi.to(u.deg) # doctest: +FLOAT_CMP
<Angle 63.43494882292201 deg>
>>> c.x # doctest: +SKIP
...
AttributeError: 'SkyCoord' object has no attribute 'x'
>>> c.representation = 'spherical'
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec, distance) in (deg, deg, kpc)
( 63.43494882, 53.3007748, 3.74165739)>
>>> c.representation = 'unitspherical'
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
( 63.43494882, 53.3007748)>
You can also use any representation class to set the representation::
>>> from astropy.coordinates import CartesianRepresentation
>>> c.representation = CartesianRepresentation
Note that if all you want is a particular representation without changing the
state of the |SkyCoord| object, you should instead use the
``astropy.coordinates.SkyCoord.represent_as()`` method::
>>> c.representation = 'spherical'
>>> cart = c.represent_as(CartesianRepresentation)
>>> cart
<CartesianRepresentation (x, y, z) in kpc
( 1., 2., 3.)>
>>> c.representation
<class 'astropy.coordinates.representation.SphericalRepresentation'>
Example 1: Plotting random data in Aitoff projection
====================================================
This is an example how to make a plot in the Aitoff projection using data
in a |SkyCoord| object. Here a randomly generated data set will be used.
First we need to import the required packages. We use
`matplotlib <http://www.matplotlib.org/>`_ here for
plotting and `numpy <http://www.numpy.org/>`_ to get the value of pi and to
generate our random data.
>>> from astropy import units as u
>>> from astropy.coordinates import SkyCoord
>>> import numpy as np
We now generate random data for visualisation. For RA this is done in the range
of 0 and 360 degrees (``ra_random``), for DEC between -90 and +90 degrees
(``dec_random``). Finally, we multiply these values by degrees to get an
`~astropy.units.Quantity` with units of degrees.
>>> ra_random = np.random.rand(100)*360.0 * u.degree
>>> dec_random = (np.random.rand(100)*180.0-90.0) * u.degree
As next step, those coordinates are transformed into an astropy.coordinates
|SkyCoord| object.
>>> c = SkyCoord(ra=ra_random, dec=dec_random, frame='icrs')
Because matplotlib needs the coordinates in radians and between :math:`-\pi`
and :math:`\pi`, not 0 and :math:`2\pi`, we have to convert them.
For this purpose the `astropy.coordinates.Angle` object provides a special method,
which we use here to wrap at 180:
>>> ra_rad = c.ra.wrap_at(180 * u.deg).radian
>>> dec_rad = c.dec.radian
As last step we set up the plotting environment with matplotlib using the
Aitoff projection with a specific title, a grid, filled circles as markers with
a markersize of 2 and an alpha value of 0.3. We use a figure with an x-y ratio
that is well suited for such a projection and we move the title upwards from
its usual position to avoid overlap with the axis labels.
.. doctest-skip::
>>> import matplotlib.pyplot as plt
>>> plt.figure(figsize=(8,4.2))
>>> plt.subplot(111, projection="aitoff")
>>> plt.title("Aitoff projection of our random data")
>>> plt.grid(True)
>>> plt.plot(ra_rad, dec_rad, 'o', markersize=2, alpha=0.3)
>>> plt.subplots_adjust(top=0.95,bottom=0.0)
>>> plt.show()
.. plot::
# This is an example how to make a plot in the Aitoff projection using data
# in a SkyCoord object. Here a randomly generated data set will be used. The
# final script can be found below.
# First we need to import the required packages. We use
# `matplotlib <http://www.matplotlib.org/>`_ here for
# plotting and `numpy <http://www.numpy.org/>`_ to get the value of pi and to
# generate our random data.
from astropy import units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
import numpy as np
# We now generate random data for visualisation. For RA this is done in the range
# of 0 and 360 degrees (``ra_random``), for DEC between -90 and +90 degrees
# (``dec_random``). Finally, we multiply these values by degrees to get an
# `~astropy.units.Quantity` with units of degrees.
ra_random = np.random.rand(100)*360.0 * u.degree
dec_random = (np.random.rand(100)*180.0-90.0) * u.degree
# As next step, those coordinates are transformed into an astropy.coordinates
# astropy.coordinates.SkyCoord object.
c = SkyCoord(ra=ra_random, dec=dec_random, frame='icrs')
# Because matplotlib needs the coordinates in radians and between :math:`-\pi`
# and :math:`\pi`, not 0 and :math:`2\pi`, we have to convert them.
# For this purpose the `astropy.coordinates.Angle` object provides a special method,
# which we use here to wrap at 180:
ra_rad = c.ra.wrap_at(180 * u.deg).radian
dec_rad = c.dec.radian
# As last step we set up the plotting environment with matplotlib using the
# Aitoff projection with a specific title, a grid, filled circles as markers with
# a markersize of 2 and an alpha value of 0.3.
plt.figure(figsize=(8,4.2))
plt.subplot(111, projection="aitoff")
plt.title("Aitoff projection of our random data", y=1.08)
plt.grid(True)
plt.plot(ra_rad, dec_rad, 'o', markersize=2, alpha=0.3)
plt.subplots_adjust(top=0.95, bottom=0.0)
plt.show()
Example 2: Plotting star positions in bulge and disk
====================================================
This is more realistic example how to make a plot in the Aitoff projection
using data in a |SkyCoord| object.
Here a randomly generated data set (multivariate
normal distribution) for both stars in the bulge and in the disk of a galaxy
will be used. Both types will be plotted with different number counts.
As in the last example, we first import the required packages.
>>> from astropy import units as u
>>> from astropy.coordinates import SkyCoord
>>> import numpy as np
We now generate random data for visualisation using
`numpy.random.multivariate_normal`.
>>> disk = np.random.multivariate_normal(mean=[0,0,0], cov=np.diag([1,1,0.5]), size=5000)
>>> bulge = np.random.multivariate_normal(mean=[0,0,0], cov=np.diag([1,1,1]), size=500)
>>> galaxy = np.concatenate([disk, bulge])
As next step, those coordinates are transformed into an astropy.coordinates
|SkyCoord| object.
>>> c_gal = SkyCoord(galaxy, representation='cartesian', frame='galactic')
>>> c_gal_icrs = c_gal.icrs
Again, as in the last example, we need to convert the coordinates in radians
and make sure they are between :math:`-\pi` and :math:`\pi`:
>>> ra_rad = c_gal_icrs.ra.wrap_at(180 * u.deg).radian
>>> dec_rad = c_gal_icrs.dec.radian
We use the same plotting setup as in the last example:
.. doctest-skip::
>>> import matplotlib.pyplot as plt
>>> plt.figure(figsize=(8,4.2))
>>> plt.subplot(111, projection="aitoff")
>>> plt.title("Aitoff projection of our random data")
>>> plt.grid(True)
>>> plt.plot(ra_rad, dec_rad, 'o', markersize=2, alpha=0.3)
>>> plt.subplots_adjust(top=0.95,bottom=0.0)
>>> plt.show()
.. plot::
# This is more realistic example how to make a plot in the Aitoff projection
# using data in a SkyCoord object.
# Here a randomly generated data set (multivariate normal distribution)
# for both stars in the bulge and in the disk of a galaxy
# will be used. Both types will be plotted with different number counts. The
# final script can be found below.
# As in the last example, we first import the required packages.
from astropy import units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
import numpy as np
# We now generate random data for visualisation with
# np.random.multivariate_normal.
disk = np.random.multivariate_normal(mean=[0,0,0], cov=np.diag([1,1,0.5]), size=5000)
bulge = np.random.multivariate_normal(mean=[0,0,0], cov=np.diag([1,1,1]), size=500)
galaxy = np.concatenate([disk, bulge])
# As next step, those coordinates are transformed into an astropy.coordinates
# astropy.coordinates.SkyCoord object.
c_gal = SkyCoord(galaxy, representation='cartesian', frame='galactic')
c_gal_icrs = c_gal.icrs
# Again, as in the last example, we need to convert the coordinates in radians
# and make sure they are between :math:`-\pi` and :math:`\pi`:
ra_rad = c_gal_icrs.ra.wrap_at(180 * u.deg).radian
dec_rad = c_gal_icrs.dec.radian
# We use the same plotting setup as in the last example:
plt.figure(figsize=(8,4.2))
plt.subplot(111, projection="aitoff")
plt.title("Aitoff projection of our random data", y=1.08)
plt.grid(True)
plt.plot(ra_rad, dec_rad, 'o', markersize=2, alpha=0.3)
plt.subplots_adjust(top=0.95,bottom=0.0)
plt.show()
Convenience methods
^^^^^^^^^^^^^^^^^^^^
A number of convenience methods are available, and you are encouraged to read
the available docstrings below:
- `~astropy.coordinates.SkyCoord.match_to_catalog_sky`,
- `~astropy.coordinates.SkyCoord.match_to_catalog_3d`,
- `~astropy.coordinates.SkyCoord.position_angle`,
- `~astropy.coordinates.SkyCoord.separation`,
- `~astropy.coordinates.SkyCoord.separation_3d`
Addition information and examples can be found in the section on
:ref:`astropy-coordinates-separations-matching`.
|