File: nddata.rst

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (361 lines) | stat: -rw-r--r-- 11,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
.. _nddata_details:

NDData
======

Overview
--------

:class:`~astropy.nddata.NDData` is based on `numpy.ndarray`-like ``data`` with
additional meta attributes:

+  ``meta``, for general metadata
+ ``unit``, representing the physical unit of the data
+ ``uncertainty`` for the uncertainty of the data
+ ``mask``, indicating invalid points in the data
+ ``wcs``, representing the relationship  between the data grid and world
  coordinates

Each of these attributes can be set during initialization or directly on the
instance. Only the ``data`` cannot be directly set after creating the instance.

Data
----

The data is the base of `~astropy.nddata.NDData` and required to be
`numpy.ndarray`-like. It's the only property that is required to create an
instance and it cannot be directly set on the instance.

For example::

    >>> import numpy as np
    >>> from astropy.nddata import NDData
    >>> array = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
    >>> ndd = NDData(array)
    >>> ndd
    NDData([[0, 1, 0],
            [1, 0, 1],
            [0, 1, 0]])

and can be accessed by the ``data`` attribute::

    >>> ndd.data
    array([[0, 1, 0],
           [1, 0, 1],
           [0, 1, 0]])

as already mentioned it is not possible to set the data directly. So
``ndd.data = np.arange(9)`` will raise an Exception. But the data can be
modified in place::

    >>> ndd.data[1,1] = 100
    >>> ndd.data
    array([[  0,   1,   0],
           [  1, 100,   1],
           [  0,   1,   0]])

Data during initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^

During initialization it is possible to provide data that it's not a
`numpy.ndarray` but convertible to one. For example passing a `list` containing
numerical values::

    >>> alist = [1, 2, 3, 4]
    >>> ndd = NDData(alist)
    >>> ndd.data  # data will be a numpy-array:
    array([1, 2, 3, 4])

Nested `list` or `tuple` are possible, but if these contain non-numerical
values the conversion might fail.

Besides input that is convertible to such an array you can use the ``data``
parameter to pass implicit additional information. For example if the data is
another `~astropy.nddata.NDData`-object it implicitly uses it's properties::

    >>> ndd = NDData(ndd, unit = 'm')
    >>> ndd2 = NDData(ndd)
    >>> ndd2.data  # It has the same data as ndd
    array([1, 2, 3, 4])
    >>> ndd2.unit  # but it also has the same unit as ndd
    Unit("m")

another possibility is to use a `~astropy.units.Quantity` as ``data``
parameter::

    >>> import astropy.units as u
    >>> quantity = np.ones(3) * u.cm  # this will create a Quantity
    >>> ndd3 = NDData(quantity)
    >>> ndd3.data
    array([ 1.,  1.,  1.])
    >>> ndd3.unit
    Unit("cm")

or a `numpy.ma.MaskedArray`::

    >>> masked_array = np.ma.array([5,10,15], mask=[False, True, False])
    >>> ndd4 = NDData(masked_array)
    >>> ndd4.data
    array([ 5, 10, 15])
    >>> ndd4.mask
    array([False,  True, False], dtype=bool)

or even a masked Quantity::

    >>> masked_quantity = np.ma.array([1,2,3,4]*u.kg, mask=[True, False, True, False])
    >>> ndd5 = NDData(masked_quantity)
    >>> ndd5.data
    array([ 1.,  2.,  3.,  4.])
    >>> ndd5.mask
    array([ True, False,  True, False], dtype=bool)
    >>> ndd5.unit
    Unit("kg")

If such an implicitly passed property conflicts with an explicit parameter, the
explicit parameter will be used and an info-message will be issued::

    >>> quantity = np.ones(3) * u.cm
    >>> ndd6 = NDData(quantity, unit='m')
    INFO: overwriting Quantity's current unit with specified unit. [astropy.nddata.nddata]
    >>> ndd6.data
    array([ 1.,  1.,  1.])
    >>> ndd6.unit
    Unit("m")

the unit of the `~astropy.units.Quantity` is being ignored and the unit is set
to the explicitly passed one.

It might be possible to pass other classes as ``data`` parameter as long as
they have the properties ``shape``, ``dtype``, ``__getitem__`` and
``__array__``.

The purpose of this mechanism is to allow considerable flexibility in the
objects used to store the data while providing a useful default (numpy array).

Mask
----

The ``mask`` is being used to indicate if data points are valid or invalid.
`~astropy.nddata.NDData` doesn't restrict this mask in any way but it is
expected to follow the `numpy.ma.MaskedArray` convention that the mask:

+ returns ``True`` for data points that are considered **invalid**.
+ returns ``False`` for those points that are **valid**.

One possibility is to create a mask by using numpy's comparison operators::

    >>> array = np.array([0, 1, 4, 0, 2])

    >>> mask = array == 0  # Mask points containing 0
    >>> mask
    array([ True, False, False,  True, False], dtype=bool)

    >>> other_mask = array > 1  # Mask points with a value greater than 1
    >>> other_mask
    array([False, False,  True, False,  True], dtype=bool)

and initialize the `~astropy.nddata.NDData` instance using the ``mask``
parameter::

    >>> ndd = NDData(array, mask=mask)
    >>> ndd.mask
    array([ True, False, False,  True, False], dtype=bool)

or by replacing the mask::

    >>> ndd.mask = other_mask
    >>> ndd.mask
    array([False, False,  True, False,  True], dtype=bool)

There is no requirement that the mask actually be a numpy array; for example, a
function which evaluates a mask value as needed is acceptable as long as it
follows the convention that ``True`` indicates a value that should be ignored.

Unit
----

The ``unit`` represents the unit of the data values. It is required to be
`~astropy.units.Unit`-like or a string that can be converted to such a
`~astropy.units.Unit`::

    >>> import astropy.units as u
    >>> ndd = NDData([1, 2, 3, 4], unit="meter")  # using a string
    >>> ndd.unit
    Unit("m")

..note::
    Setting the ``unit`` on an instance is not possible.

Uncertainties
-------------

The ``uncertainty`` represents an arbitrary representation of the error of the
data values. To indicate which kind of uncertainty representation is used the
``uncertainty`` should have an ``uncertainty_type`` property. If no such
property is found it will be wrapped inside a
`~astropy.nddata.UnknownUncertainty`.

The ``uncertainty_type`` should follow the `~astropy.nddata.StdDevUncertainty`
convention that it returns a short string like ``"std"`` for an uncertainty
given in standard deviation.

Like the other properties the ``uncertainty`` can be set during
initialization::

    >>> from astropy.nddata import StdDevUncertainty
    >>> array = np.array([10, 7, 12, 22])
    >>> uncert = StdDevUncertainty(np.sqrt(array))
    >>> ndd = NDData(array, uncertainty=uncert)
    >>> ndd.uncertainty
    StdDevUncertainty([ 3.16227766,  2.64575131,  3.46410162,  4.69041576])

or on the instance directly::

    >>> other_uncert = StdDevUncertainty([2,2,2,2])
    >>> ndd.uncertainty = other_uncert
    >>> ndd.uncertainty
    StdDevUncertainty([2, 2, 2, 2])

but it will print an info message if there is no ``uncertainty_type``::

    >>> ndd.uncertainty = np.array([5, 1, 2, 10])
    INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
    >>> ndd.uncertainty
    UnknownUncertainty([ 5,  1,  2, 10])

WCS
---

The ``wcs`` should contain a mapping from the gridded data to world
coordinates. There are no restrictions placed on the property currently but it
may be restricted to an `~astropy.wcs.WCS` object or a more generalized WCS
object in the future.

.. note::
    Like the unit the wcs cannot be set on an instance.

Meta-data
---------

The ``meta`` property contains all further meta information that don't fit
any other property.

If given it must be `dict`-like::

    >>> ndd = NDData([1,2,3], meta={'observer': 'myself'})
    >>> ndd.meta
    {'observer': 'myself'}

`dict`-like means it must be a mapping from some keys to some values. This
also includes `~astropy.io.fits.Header` objects::

    >>> from astropy.io import fits
    >>> header = fits.Header()
    >>> header['observer'] = 'Edwin Hubble'
    >>> ndd = NDData(np.zeros([10, 10]), meta=header)
    >>> ndd.meta['observer']
    'Edwin Hubble'

If the ``meta`` isn't provided or explicitly set to ``None`` it will default to
an empty `collections.OrderedDict`::

    >>> ndd.meta = None
    >>> ndd.meta
    OrderedDict()

    >>> ndd = NDData([1,2,3])
    >>> ndd.meta
    OrderedDict()

The ``meta`` object therefore supports adding or updating these values::

    >>> ndd.meta['exposure_time'] = 340.
    >>> ndd.meta['filter'] = 'J'

Elements of the meta-data dictionary can be set to any valid Python object::

    >>> ndd.meta['history'] = ['calibrated', 'aligned', 'flat-fielded']

Initialization with copy
------------------------

The default way to create an `~astropy.nddata.NDData` instance is to try saving
the parameters as references to the original rather than as copy. Sometimes
this is not possible because the internal mechanics don't allow for this. For
example if the ``data`` is a `list` then during initialization this is copied
while converting to a `~numpy.ndarray`. But it is also possible to enforce
copies during initialization by setting the ``copy`` parameter to ``True``::

    >>> array = np.array([1, 2, 3, 4])
    >>> ndd = NDData(array)
    >>> ndd.data[2] = 10
    >>> array[2]  # Original array has changed
    10

    >>> ndd2 = NDData(array, copy=True)
    >>> ndd2.data[2] = 3
    >>> array[2]  # Original array hasn't changed.
    10

.. note::
    In some cases setting ``copy=True`` will copy the ``data`` twice. Known
    cases are if the ``data`` is a `list` or `tuple`.

Converting NDData to other classes
----------------------------------

There is limited to support to convert a `~astropy.nddata.NDData` instance to
other classes. In the process some properties might be lost.

    >>> data = np.array([1, 2, 3, 4])
    >>> mask = np.array([True, False, False, True])
    >>> unit = 'm'
    >>> ndd = NDData(data, mask=mask, unit=unit)

`numpy.ndarray`
^^^^^^^^^^^^^^^

Converting the ``data`` to an array::

    >>> array = np.asarray(ndd.data)
    >>> array
    array([1, 2, 3, 4])

Though using ``np.asarray`` is not required in most cases it will ensure that
the result is always a `numpy.ndarray`

`numpy.ma.MaskedArray`
^^^^^^^^^^^^^^^^^^^^^^

Converting the ``data``  and ``mask`` to a MaskedArray::


    >>> masked_array = np.ma.array(ndd.data, mask=ndd.mask)
    >>> masked_array
    masked_array(data = [-- 2 3 --],
                 mask = [ True False False  True],
           fill_value = 999999)

`~astropy.units.Quantity`
^^^^^^^^^^^^^^^^^^^^^^^^^

Converting the ``data``  and ``unit`` to a Quantity::

    >>> quantity = u.Quantity(ndd.data, unit=ndd.unit)
    >>> quantity
    <Quantity [ 1., 2., 3., 4.] m>

masked Quantity
^^^^^^^^^^^^^^^

Converting the ``data``, ``mask``  and ``unit`` to a masked Quantity requires
NumPy version 1.9 or newer::

    >>> ma_quantity = np.ma.array(u.Quantity(ndd.data, unit=ndd.unit), mask=ndd.mask)  # doctest: +SKIP
    >>> ma_quantity  # doctest: +SKIP
    masked_Quantity(data = [-- 2.0 3.0 --] m,
                    mask = [ True False False  True],
              fill_value = 1e+20)

.. todo::
    Remove doctest skip as soon as NumPy 1.9 isn't supported anymore.