1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
.. _nddata_details:
NDData
======
Overview
--------
:class:`~astropy.nddata.NDData` is based on `numpy.ndarray`-like ``data`` with
additional meta attributes:
+ ``meta``, for general metadata
+ ``unit``, representing the physical unit of the data
+ ``uncertainty`` for the uncertainty of the data
+ ``mask``, indicating invalid points in the data
+ ``wcs``, representing the relationship between the data grid and world
coordinates
Each of these attributes can be set during initialization or directly on the
instance. Only the ``data`` cannot be directly set after creating the instance.
Data
----
The data is the base of `~astropy.nddata.NDData` and required to be
`numpy.ndarray`-like. It's the only property that is required to create an
instance and it cannot be directly set on the instance.
For example::
>>> import numpy as np
>>> from astropy.nddata import NDData
>>> array = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
>>> ndd = NDData(array)
>>> ndd
NDData([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
and can be accessed by the ``data`` attribute::
>>> ndd.data
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
as already mentioned it is not possible to set the data directly. So
``ndd.data = np.arange(9)`` will raise an Exception. But the data can be
modified in place::
>>> ndd.data[1,1] = 100
>>> ndd.data
array([[ 0, 1, 0],
[ 1, 100, 1],
[ 0, 1, 0]])
Data during initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^
During initialization it is possible to provide data that it's not a
`numpy.ndarray` but convertible to one. For example passing a `list` containing
numerical values::
>>> alist = [1, 2, 3, 4]
>>> ndd = NDData(alist)
>>> ndd.data # data will be a numpy-array:
array([1, 2, 3, 4])
Nested `list` or `tuple` are possible, but if these contain non-numerical
values the conversion might fail.
Besides input that is convertible to such an array you can use the ``data``
parameter to pass implicit additional information. For example if the data is
another `~astropy.nddata.NDData`-object it implicitly uses it's properties::
>>> ndd = NDData(ndd, unit = 'm')
>>> ndd2 = NDData(ndd)
>>> ndd2.data # It has the same data as ndd
array([1, 2, 3, 4])
>>> ndd2.unit # but it also has the same unit as ndd
Unit("m")
another possibility is to use a `~astropy.units.Quantity` as ``data``
parameter::
>>> import astropy.units as u
>>> quantity = np.ones(3) * u.cm # this will create a Quantity
>>> ndd3 = NDData(quantity)
>>> ndd3.data
array([ 1., 1., 1.])
>>> ndd3.unit
Unit("cm")
or a `numpy.ma.MaskedArray`::
>>> masked_array = np.ma.array([5,10,15], mask=[False, True, False])
>>> ndd4 = NDData(masked_array)
>>> ndd4.data
array([ 5, 10, 15])
>>> ndd4.mask
array([False, True, False], dtype=bool)
or even a masked Quantity::
>>> masked_quantity = np.ma.array([1,2,3,4]*u.kg, mask=[True, False, True, False])
>>> ndd5 = NDData(masked_quantity)
>>> ndd5.data
array([ 1., 2., 3., 4.])
>>> ndd5.mask
array([ True, False, True, False], dtype=bool)
>>> ndd5.unit
Unit("kg")
If such an implicitly passed property conflicts with an explicit parameter, the
explicit parameter will be used and an info-message will be issued::
>>> quantity = np.ones(3) * u.cm
>>> ndd6 = NDData(quantity, unit='m')
INFO: overwriting Quantity's current unit with specified unit. [astropy.nddata.nddata]
>>> ndd6.data
array([ 1., 1., 1.])
>>> ndd6.unit
Unit("m")
the unit of the `~astropy.units.Quantity` is being ignored and the unit is set
to the explicitly passed one.
It might be possible to pass other classes as ``data`` parameter as long as
they have the properties ``shape``, ``dtype``, ``__getitem__`` and
``__array__``.
The purpose of this mechanism is to allow considerable flexibility in the
objects used to store the data while providing a useful default (numpy array).
Mask
----
The ``mask`` is being used to indicate if data points are valid or invalid.
`~astropy.nddata.NDData` doesn't restrict this mask in any way but it is
expected to follow the `numpy.ma.MaskedArray` convention that the mask:
+ returns ``True`` for data points that are considered **invalid**.
+ returns ``False`` for those points that are **valid**.
One possibility is to create a mask by using numpy's comparison operators::
>>> array = np.array([0, 1, 4, 0, 2])
>>> mask = array == 0 # Mask points containing 0
>>> mask
array([ True, False, False, True, False], dtype=bool)
>>> other_mask = array > 1 # Mask points with a value greater than 1
>>> other_mask
array([False, False, True, False, True], dtype=bool)
and initialize the `~astropy.nddata.NDData` instance using the ``mask``
parameter::
>>> ndd = NDData(array, mask=mask)
>>> ndd.mask
array([ True, False, False, True, False], dtype=bool)
or by replacing the mask::
>>> ndd.mask = other_mask
>>> ndd.mask
array([False, False, True, False, True], dtype=bool)
There is no requirement that the mask actually be a numpy array; for example, a
function which evaluates a mask value as needed is acceptable as long as it
follows the convention that ``True`` indicates a value that should be ignored.
Unit
----
The ``unit`` represents the unit of the data values. It is required to be
`~astropy.units.Unit`-like or a string that can be converted to such a
`~astropy.units.Unit`::
>>> import astropy.units as u
>>> ndd = NDData([1, 2, 3, 4], unit="meter") # using a string
>>> ndd.unit
Unit("m")
..note::
Setting the ``unit`` on an instance is not possible.
Uncertainties
-------------
The ``uncertainty`` represents an arbitrary representation of the error of the
data values. To indicate which kind of uncertainty representation is used the
``uncertainty`` should have an ``uncertainty_type`` property. If no such
property is found it will be wrapped inside a
`~astropy.nddata.UnknownUncertainty`.
The ``uncertainty_type`` should follow the `~astropy.nddata.StdDevUncertainty`
convention that it returns a short string like ``"std"`` for an uncertainty
given in standard deviation.
Like the other properties the ``uncertainty`` can be set during
initialization::
>>> from astropy.nddata import StdDevUncertainty
>>> array = np.array([10, 7, 12, 22])
>>> uncert = StdDevUncertainty(np.sqrt(array))
>>> ndd = NDData(array, uncertainty=uncert)
>>> ndd.uncertainty
StdDevUncertainty([ 3.16227766, 2.64575131, 3.46410162, 4.69041576])
or on the instance directly::
>>> other_uncert = StdDevUncertainty([2,2,2,2])
>>> ndd.uncertainty = other_uncert
>>> ndd.uncertainty
StdDevUncertainty([2, 2, 2, 2])
but it will print an info message if there is no ``uncertainty_type``::
>>> ndd.uncertainty = np.array([5, 1, 2, 10])
INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
>>> ndd.uncertainty
UnknownUncertainty([ 5, 1, 2, 10])
WCS
---
The ``wcs`` should contain a mapping from the gridded data to world
coordinates. There are no restrictions placed on the property currently but it
may be restricted to an `~astropy.wcs.WCS` object or a more generalized WCS
object in the future.
.. note::
Like the unit the wcs cannot be set on an instance.
Meta-data
---------
The ``meta`` property contains all further meta information that don't fit
any other property.
If given it must be `dict`-like::
>>> ndd = NDData([1,2,3], meta={'observer': 'myself'})
>>> ndd.meta
{'observer': 'myself'}
`dict`-like means it must be a mapping from some keys to some values. This
also includes `~astropy.io.fits.Header` objects::
>>> from astropy.io import fits
>>> header = fits.Header()
>>> header['observer'] = 'Edwin Hubble'
>>> ndd = NDData(np.zeros([10, 10]), meta=header)
>>> ndd.meta['observer']
'Edwin Hubble'
If the ``meta`` isn't provided or explicitly set to ``None`` it will default to
an empty `collections.OrderedDict`::
>>> ndd.meta = None
>>> ndd.meta
OrderedDict()
>>> ndd = NDData([1,2,3])
>>> ndd.meta
OrderedDict()
The ``meta`` object therefore supports adding or updating these values::
>>> ndd.meta['exposure_time'] = 340.
>>> ndd.meta['filter'] = 'J'
Elements of the meta-data dictionary can be set to any valid Python object::
>>> ndd.meta['history'] = ['calibrated', 'aligned', 'flat-fielded']
Initialization with copy
------------------------
The default way to create an `~astropy.nddata.NDData` instance is to try saving
the parameters as references to the original rather than as copy. Sometimes
this is not possible because the internal mechanics don't allow for this. For
example if the ``data`` is a `list` then during initialization this is copied
while converting to a `~numpy.ndarray`. But it is also possible to enforce
copies during initialization by setting the ``copy`` parameter to ``True``::
>>> array = np.array([1, 2, 3, 4])
>>> ndd = NDData(array)
>>> ndd.data[2] = 10
>>> array[2] # Original array has changed
10
>>> ndd2 = NDData(array, copy=True)
>>> ndd2.data[2] = 3
>>> array[2] # Original array hasn't changed.
10
.. note::
In some cases setting ``copy=True`` will copy the ``data`` twice. Known
cases are if the ``data`` is a `list` or `tuple`.
Converting NDData to other classes
----------------------------------
There is limited to support to convert a `~astropy.nddata.NDData` instance to
other classes. In the process some properties might be lost.
>>> data = np.array([1, 2, 3, 4])
>>> mask = np.array([True, False, False, True])
>>> unit = 'm'
>>> ndd = NDData(data, mask=mask, unit=unit)
`numpy.ndarray`
^^^^^^^^^^^^^^^
Converting the ``data`` to an array::
>>> array = np.asarray(ndd.data)
>>> array
array([1, 2, 3, 4])
Though using ``np.asarray`` is not required in most cases it will ensure that
the result is always a `numpy.ndarray`
`numpy.ma.MaskedArray`
^^^^^^^^^^^^^^^^^^^^^^
Converting the ``data`` and ``mask`` to a MaskedArray::
>>> masked_array = np.ma.array(ndd.data, mask=ndd.mask)
>>> masked_array
masked_array(data = [-- 2 3 --],
mask = [ True False False True],
fill_value = 999999)
`~astropy.units.Quantity`
^^^^^^^^^^^^^^^^^^^^^^^^^
Converting the ``data`` and ``unit`` to a Quantity::
>>> quantity = u.Quantity(ndd.data, unit=ndd.unit)
>>> quantity
<Quantity [ 1., 2., 3., 4.] m>
masked Quantity
^^^^^^^^^^^^^^^
Converting the ``data``, ``mask`` and ``unit`` to a masked Quantity requires
NumPy version 1.9 or newer::
>>> ma_quantity = np.ma.array(u.Quantity(ndd.data, unit=ndd.unit), mask=ndd.mask) # doctest: +SKIP
>>> ma_quantity # doctest: +SKIP
masked_Quantity(data = [-- 2.0 3.0 --] m,
mask = [ True False False True],
fill_value = 1e+20)
.. todo::
Remove doctest skip as soon as NumPy 1.9 isn't supported anymore.
|