1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
.. include:: references.txt
.. _astropy-table:
*****************************
Data Tables (`astropy.table`)
*****************************
Introduction
============
`astropy.table` provides functionality for storing and manipulating
heterogeneous tables of data in a way that is familiar to `numpy` users. A few
notable capabilities of this package are:
* Initialize a table from a wide variety of input data structures and types.
* Modify a table by adding or removing columns, changing column names,
or adding new rows of data.
* Handle tables containing missing values.
* Include table and column metadata as flexible data structures.
* Specify a description, units and output formatting for columns.
* Interactively scroll through long tables similar to using ``more``.
* Create a new table by selecting rows or columns from a table.
* Perform :ref:`table_operations` like database joins, concatenation, and binning.
* Maintain a table index for fast retrieval of table items or ranges.
* Manipulate multidimensional columns.
* Handle non-native (mixin) column types within table.
* Methods for :ref:`read_write_tables` to files.
* Hooks for :ref:`subclassing_table` and its component classes.
Currently `astropy.table` is used when reading an ASCII table using
`astropy.io.ascii`. Future releases of AstroPy are expected to use
the |Table| class for other subpackages such as `astropy.io.votable` and `astropy.io.fits` .
Getting Started
===============
The basic workflow for creating a table, accessing table elements,
and modifying the table is shown below. These examples show a very simple
case, while the full `astropy.table` documentation is available from the
:ref:`using_astropy_table` section.
First create a simple table with three columns of data named ``a``, ``b``,
and ``c``. These columns have integer, float, and string values respectively::
>>> from astropy.table import Table
>>> a = [1, 4, 5]
>>> b = [2.0, 5.0, 8.2]
>>> c = ['x', 'y', 'z']
>>> t = Table([a, b, c], names=('a', 'b', 'c'), meta={'name': 'first table'})
If you have row-oriented input data such as a list of records, use the ``rows``
keyword. In this example we also explicitly set the data types for each column::
>>> data_rows = [(1, 2.0, 'x'),
... (4, 5.0, 'y'),
... (5, 8.2, 'z')]
>>> t = Table(rows=data_rows, names=('a', 'b', 'c'), meta={'name': 'first table'},
... dtype=('i4', 'f8', 'S1'))
There are a few ways to examine the table. You can get detailed information
about the table values and column definitions as follows::
>>> t # doctest: +IGNORE_OUTPUT_3
<Table length=3>
a b c
int32 float64 str1
----- ------- ----
1 2.0 x
4 5.0 y
5 8.2 z
You can also assign a unit to the columns. If any column has a unit
assigned, all units would be shown as follows::
>>> t['b'].unit = 's'
>>> t # doctest: +IGNORE_OUTPUT_3
<Table length=3>
a b c
s
int32 float64 str1
----- ------- ----
1 2.0 x
4 5.0 y
5 8.2 z
Finally, you can get summary information about the table as follows::
>>> t.info # doctest: +IGNORE_OUTPUT_3
<Table length=3>
name dtype unit
---- ------- ----
a int32
b float64 s
c str1
A column with a unit works with and can be easily converted to an
`~astropy.units.Quantity` object (but see :ref:`quantity_and_qtable` for
a way to natively use `~astropy.units.Quantity` objects in tables)::
>>> t['b'].quantity
<Quantity [ 2. , 5. , 8.2] s>
>>> t['b'].to('min') # doctest: +FLOAT_CMP
<Quantity [ 0.03333333, 0.08333333, 0.13666667] min>
From within the IPython notebook, the table is displayed as a formatted HTML
table (details of how it appears can be changed by altering the
``astropy.table.default_notebook_table_class`` configuration item):
.. image:: table_repr_html.png
Or you can get a fancier notebook interface with in-browser search and sort
using `~astropy.table.Table.show_in_notebook`:
.. image:: table_show_in_nb.png
If you print the table (either from the notebook or in a text console session)
then a formatted version appears::
>>> print(t)
a b c
s
--- --- ---
1 2.0 x
4 5.0 y
5 8.2 z
If you do not like the format of a particular column, you can change it::
>>> t['b'].format = '7.3f'
>>> print(t)
a b c
s
--- ------- ---
1 2.000 x
4 5.000 y
5 8.200 z
For a long table you can scroll up and down through the table one page at
time::
>>> t.more() # doctest: +SKIP
You can also display it as an HTML-formatted table in the browser::
>>> t.show_in_browser() # doctest: +SKIP
or as an interactive (searchable & sortable) javascript table::
>>> t.show_in_browser(jsviewer=True) # doctest: +SKIP
Now examine some high-level information about the table::
>>> t.colnames
['a', 'b', 'c']
>>> len(t)
3
>>> t.meta
{'name': 'first table'}
Access the data by column or row using familiar `numpy` structured array syntax::
>>> t['a'] # Column 'a'
<Column name='a' dtype='int32' length=3>
1
4
5
>>> t['a'][1] # Row 1 of column 'a'
4
>>> t[1] # Row object for table row index=1 # doctest: +IGNORE_OUTPUT_3
<Row index=1>
a b c
s
int32 float64 str1
----- ------- ----
4 5.000 y
>>> t[1]['a'] # Column 'a' of row 1
4
You can retrieve a subset of a table by rows (using a slice) or
columns (using column names), where the subset is returned as a new table::
>>> print(t[0:2]) # Table object with rows 0 and 1
a b c
s
--- ------- ---
1 2.000 x
4 5.000 y
>>> print(t['a', 'c']) # Table with cols 'a', 'c'
a c
--- ---
1 x
4 y
5 z
Modifying table values in place is flexible and works as one would expect::
>>> t['a'][:] = [-1, -2, -3] # Set all column values in place
>>> t['a'][2] = 30 # Set row 2 of column 'a'
>>> t[1] = (8, 9.0, "W") # Set all row values
>>> t[1]['b'] = -9 # Set column 'b' of row 1
>>> t[0:2]['b'] = 100.0 # Set column 'b' of rows 0 and 1
>>> print(t)
a b c
s
--- ------- ---
-1 100.000 x
8 100.000 W
30 8.200 z
Replace, add, remove, and rename columns with the following::
>>> t['b'] = ['a', 'new', 'dtype'] # Replace column b (different from in place)
>>> t['d'] = [1, 2, 3] # Add column d
>>> del t['c'] # Delete column c
>>> t.rename_column('a', 'A') # Rename column a to A
>>> t.colnames
['A', 'b', 'd']
Adding a new row of data to the table is as follows::
>>> t.add_row([-8, -9, 10])
>>> len(t)
4
You can create a table with support for missing values, for example by setting
``masked=True``::
>>> t = Table([a, b, c], names=('a', 'b', 'c'), masked=True, dtype=('i4', 'f8', 'S1'))
>>> t['a'].mask = [True, True, False]
>>> t # doctest: +IGNORE_OUTPUT_3
<Table masked=True length=3>
a b c
int32 float64 str1
----- ------- ----
-- 2.0 x
-- 5.0 y
5 8.2 z
You can include certain object types like `~astropy.time.Time`,
`~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity` in your table.
These "mixin" columns behave like a hybrid of a regular `~astropy.table.Column`
and the native object type (see :ref:`mixin_columns`). For example::
>>> from astropy.time import Time
>>> from astropy.coordinates import SkyCoord
>>> tm = Time(['2000:002', '2002:345'])
>>> sc = SkyCoord([10, 20], [-45, +40], unit='deg')
>>> t = Table([tm, sc], names=['time', 'skycoord'])
>>> t
<Table length=2>
time skycoord
deg,deg
object object
--------------------- ----------
2000:002:00:00:00.000 10.0,-45.0
2002:345:00:00:00.000 20.0,40.0
The `~astropy.table.QTable` class is a variant of `~astropy.table.Table` that
allows including a native `~astropy.units.Quantity` in a table instead of
converting to a `~astropy.table.Column` object (see :ref:`quantity_and_qtable`
for details)::
>>> from astropy.table import QTable
>>> import astropy.units as u
>>> t = QTable()
>>> t['dist'] = [1, 2] * u.m
>>> t['velocity'] = [3, 4] * u.m / u.s
>>> t
<QTable length=2>
dist velocity
m m / s
float64 float64
------- --------
1.0 3.0
2.0 4.0
.. _using_astropy_table:
Using ``table``
===============
The details of using `astropy.table` are provided in the following sections:
Construct table
---------------
.. toctree::
:maxdepth: 2
construct_table.rst
Access table
---------------
.. toctree::
:maxdepth: 2
access_table.rst
Modify table
---------------
.. toctree::
:maxdepth: 2
modify_table.rst
Table operations
-----------------
.. toctree::
:maxdepth: 2
operations.rst
Indexing
--------
.. toctree::
:maxdepth: 2
indexing.rst
Masking
---------------
.. toctree::
:maxdepth: 2
masking.rst
I/O with tables
----------------
.. toctree::
:maxdepth: 2
io.rst
pandas.rst
Mixin columns
----------------
.. toctree::
:maxdepth: 2
mixin_columns.rst
Implementation
----------------
.. toctree::
:maxdepth: 2
implementation_details.rst
implementation_change_1.0.rst
Reference/API
=============
.. automodapi:: astropy.table
|