File: indexing.rst

package info (click to toggle)
python-astropy 1.3-8~bpo8%2B2
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 44,292 kB
  • sloc: ansic: 160,360; python: 137,322; sh: 11,493; lex: 7,638; yacc: 4,956; xml: 1,796; makefile: 474; cpp: 364
file content (228 lines) | stat: -rw-r--r-- 6,582 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
.. include:: references.txt
.. |add_index| replace:: :func:`~astropy.table.Table.add_index`
.. |index_mode| replace:: :func:`~astropy.table.Table.index_mode`

.. _table-indexing:

Table indexing
--------------

Once a |Table| has been created, it is possible to create indexes on one or
more columns of the table. An index internally sorts the rows of a table based
on the index column(s), allowing for element retrieval by column value and
improved performance for certain table operations.

.. Warning::

   The table indexing engine is new and is not yet considered stable.
   It is recommended to avoid using this engine in production code for now.

Creating an index
^^^^^^^^^^^^^^^^^

To create an index on a table, use the |add_index| method::

   >>> from astropy.table import Table
   >>> t = Table([(2, 3, 2, 1), (8, 7, 6, 5)], names=('a', 'b'))
   >>> t.add_index('a')

The optional argument "unique" may be specified to create an index with
uniquely valued elements.

To create a composite index on multiple columns, pass a list of columns
instead::

   >>> t.add_index(['a', 'b'])

In particular, the first index created using the
|add_index| method is considered the default index or the "primary key". To
retrieve an index from a table, use the `~astropy.table.Table.indices` property::

   >>> t.indices['a']
    a  rows
   --- ----
     1    3
     2    0
     2    2
     3    1
   >>> t.indices['a', 'b']
    a   b  rows
   --- --- ----
     1   5    3
     2   6    2
     2   8    0
     3   7    1



Row retrieval using indices
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Row retrieval can be accomplished using two table properties: `~astropy.table.Table.loc` and
`~astropy.table.Table.iloc`. The `~astropy.table.Table.loc` property can be indexed either by column value, range of
column values (*including* the bounds), or a list or ndarray of column values::

   >>> t = Table([(1, 2, 3, 4), (10, 1, 9, 9)], names=('a', 'b'), dtype=['i8', 'i8'])
   >>> t.add_index('a')
   >>> t.loc[2]
   <Row index=1>
     a     b
   int64 int64
   ----- -----
       2     1
   >>> t.loc[[1, 4]]
   <Table length=2>
     a     b  
   int64 int64
   ----- -----
       1    10
       4     9
   >>> t.loc[1:3]
   <Table length=3>
     a     b  
   int64 int64
   ----- -----
       1    10
       2     1
       3     9
   >>> t.loc[:]
   <Table length=4>
     a     b  
   int64 int64
   ----- -----
       1    10
       2     1
       3     9
       4     9


Note that by default, `~astropy.table.Table.loc` uses the primary index, which here is column
'a'. To use a different index, pass the indexed column name before the
retrieval data::

   >>> t.add_index('b')
   >>> t.loc['b', 8:10]
   <Table length=3>
     a     b  
   int64 int64
   ----- -----
       3     9
       4     9
       1    10

The property `~astropy.table.Table.iloc` works similarly, except that the retrieval information must
be either an int or a slice, and relates to the sorted order of the index
rather than column values. For example::

   >>> t.iloc[0] # smallest row by value 'a'
   <Row index=0>
     a     b
   int64 int64
   ----- -----
       1    10
   >>> t.iloc['b', 1:] # all but smallest value of 'b'
   <Table length=3>
     a     b  
   int64 int64
   ----- -----
       3     9
       4     9
       1    10

Effects on performance
^^^^^^^^^^^^^^^^^^^^^^
Table operations change somewhat when indices are present, and there are a
number of factors to consider when deciding whether the use of indices will
improve performance. In general, indexing offers the following advantages:

* Table grouping and sorting based on indexed column(s) become faster
* Retrieving values by index is faster than custom searching

There are certain caveats, however:

* Creating an index requires time and memory
* Table modifications become slower due to automatic index updates
* Slicing a table becomes slower due to index relabeling

See `here <http://nbviewer.ipython.org/github/mdmueller/astropy-notebooks/blob/master/table/indexing-profiling.ipynb>`_ for an IPython notebook profiling various aspects of table indexing.

Index modes
^^^^^^^^^^^
The |index_mode| method allows for some flexibility in the behavior of table
indexing by allowing the user to enter a specific indexing mode via a context manager. There are
currently three indexing modes: *freeze*, *copy_on_getitem*, and
*discard_on_copy*. The *freeze* mode prevents automatic index updates whenever
a column of the index is modified, and all indices refresh themselves after the
context ends::

  >>> with t.index_mode('freeze'):
  ...    t['a'][0] = 0
  ...    print(t.indices['a']) # unmodified
   a  rows
  --- ----
    1    0
    2    1
    3    2
    4    3
  >>> print(t.indices['a']) # modified
   a  rows
  --- ----
    0    0
    2    1
    3    2
    4    3

The *copy_on_getitem* mode forces columns to copy and relabel their indices upon
slicing. In the absence of this mode, table slices will preserve
indices while column slices will not::

  >>> t['a'][[1, 3]].info.indices
  []
  >>> with t.index_mode('copy_on_getitem'):
  ...    print(t['a'][[1, 3]].info.indices)
  [ a  rows
  --- ----
    2    0
    4    1]

The *discard_on_copy* mode prevents indices from being copied whenever a column
or table is copied::

  >>> t2 = Table(t)
  >>> t2.indices['a']
   a  rows
  --- ----
    0    0
    2    1
    3    2
    4    3
  >>> t2.indices['b']
   b  rows
  --- ----
    1    1
    9    2
    9    3
   10    0
  >>> with t.index_mode('discard_on_copy'):
  ...    t2 = Table(t)
  ...    print(t2.indices)
  []

Engines
^^^^^^^
When creating an index via |add_index|, the keyword argument "engine" may be
specified to use a particular indexing engine. The available engines are

* `~astropy.table.SortedArray`, a sorted array engine using an underlying
  sorted Table
* `~astropy.table.FastRBT`, a C-based red-black tree engine
* `~astropy.table.FastBST`, a C-based binary search tree engine
* `~astropy.table.BST`, a Python-based binary search tree engine

Note that FastRBT and FastBST depend on the bintrees dependency; without this
dependency, both classes default to `~astropy.table.BST`. For a comparison of
engine performance, see `this IPython notebook
<http://nbviewer.ipython.org/github/mdmueller/astropy-notebooks/blob/master/table/indexing-profiling.ipynb>`_. Probably
the most important takeaway is that `~astropy.table.SortedArray` (the default
engine) is usually best, although `~astropy.table.FastRBT` may be more
appropriate for an index created on an empty column since adding new values is quicker.