1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
.. include:: references.txt
.. |join| replace:: :func:`~astropy.table.join`
.. _table_operations:
Table operations
-----------------
In this section we describe higher-level operations that can be used to generate a new
table from one or more input tables. This includes:
=======================
.. list-table::
:header-rows: 1
:widths: 28 52 20
* - Documentation
- Description
- Function
* - `Grouped operations`_
- Group tables and columns by keys
- `~astropy.table.Table.group_by`
* - `Binning`_
- Binning tables
- `~astropy.table.Table.group_by`
* - `Stack vertically`_
- Concatenate input tables along rows
- `~astropy.table.vstack`
* - `Stack horizontally`_
- Concatenate input tables along columns
- `~astropy.table.hstack`
* - `Join`_
- Database-style join of two tables
- `~astropy.table.join`
* - `Unique rows`_
- Unique table rows by keys
- `~astropy.table.unique`
.. _grouped-operations:
Grouped operations
^^^^^^^^^^^^^^^^^^
Sometimes in a table or table column there are natural groups within the dataset for which
it makes sense to compute some derived values. A simple example is a list of objects with
photometry from various observing runs::
>>> from astropy.table import Table
>>> obs = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 17.5
... M31 2012-01-02 17.1 17.4
... M101 2012-01-02 15.1 13.5
... M82 2012-02-14 16.2 14.5
... M31 2012-02-14 16.9 17.3
... M82 2012-02-14 15.2 15.5
... M101 2012-02-14 15.0 13.6
... M82 2012-03-26 15.7 16.5
... M101 2012-03-26 15.1 13.5
... M101 2012-03-26 14.8 14.3
... """, format='ascii')
Table groups
~~~~~~~~~~~~~~
Now suppose we want the mean magnitudes for each object. We first group the data by the
``name`` column with the :func:`~astropy.table.Table.group_by` method. This returns
a new table sorted by ``name`` which has a ``groups`` property specifying the unique
values of ``name`` and the corresponding table rows::
>>> obs_by_name = obs.group_by('name')
>>> print(obs_by_name) # doctest: +SKIP
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5 << First group (index=0, key='M101')
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
M31 2012-01-02 17.0 17.5 << Second group (index=4, key='M31')
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
M82 2012-02-14 16.2 14.5 << Third group (index=7, key='M83')
M82 2012-02-14 15.2 15.5
M82 2012-03-26 15.7 16.5
<< End of groups (index=10)
>>> print(obs_by_name.groups.keys)
name
----
M101
M31
M82
>>> print(obs_by_name.groups.indices)
[ 0 4 7 10]
The ``groups`` property is the portal to all grouped operations with tables and columns.
It defines how the table is grouped via an array of the unique row key values and the
indices of the group boundaries for those key values. The groups here correspond to the
row slices ``0:4``, ``4:7``, and ``7:10`` in the ``obs_by_name`` table.
The initial argument (``keys``) for the `~astropy.table.Table.group_by` function
can take a number of input data types:
- Single string value with a table column name (as shown above)
- List of string values with table column names
- Another |Table| or |Column| with same length as table
- Numpy structured array with same length as table
- Numpy homogeneous array with same length as table
In all cases the corresponding row elements are considered as a tuple of values which
form a key value that is used to sort the original table and generate
the required groups.
As an example, to get the average magnitudes for each object on each observing
night, we would first group the table on both ``name`` and ``obs_date`` as follows::
>>> print(obs.group_by(['name', 'obs_date']).groups.keys)
name obs_date
---- ----------
M101 2012-01-02
M101 2012-02-14
M101 2012-03-26
M31 2012-01-02
M31 2012-02-14
M82 2012-02-14
M82 2012-03-26
Manipulating groups
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once you have applied grouping to a table then you can easily access the individual
groups or subsets of groups. In all cases this returns a new grouped table.
For instance to get the sub-table which corresponds to the second group (index=1)
do::
>>> print(obs_by_name.groups[1])
name obs_date mag_b mag_v
---- ---------- ----- -----
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
To get the first and second groups together use a slice::
>>> groups01 = obs_by_name.groups[0:2]
>>> print(groups01)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
>>> print(groups01.groups.keys)
name
----
M101
M31
You can also supply a numpy array of indices or a boolean mask to select particular
groups, e.g.::
>>> mask = obs_by_name.groups.keys['name'] == 'M101'
>>> print(obs_by_name.groups[mask])
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
One can iterate over the group sub-tables and corresponding keys with::
>>> for key, group in zip(obs_by_name.groups.keys, obs_by_name.groups):
... print('****** {0} *******'.format(key['name']))
... print(group)
... print('')
...
****** M101 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
****** M31 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
****** M82 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M82 2012-02-14 16.2 14.5
M82 2012-02-14 15.2 15.5
M82 2012-03-26 15.7 16.5
Column Groups
~~~~~~~~~~~~~~
Like |Table| objects, |Column| objects can also be grouped for subsequent
manipulation with grouped operations. This can apply both to columns within a
|Table| or bare |Column| objects.
As for |Table|, the grouping is generated with the
`~astropy.table.Table.group_by` method. The difference here is that
there is no option of providing one or more column names since that
doesn't make sense for a |Column|.
Examples::
>>> from astropy.table import Column
>>> import numpy as np
>>> c = Column([1, 2, 3, 4, 5, 6], name='a')
>>> key_vals = np.array(['foo', 'bar', 'foo', 'foo', 'qux', 'qux'])
>>> cg = c.group_by(key_vals)
>>> for key, group in zip(cg.groups.keys, cg.groups):
... print('****** {0} *******'.format(key))
... print(group)
... print('')
...
****** bar *******
a
---
2
****** foo *******
a
---
1
3
4
****** qux *******
a
---
5
6
Aggregation
~~~~~~~~~~~~~~
Aggregation is the process of applying a
specified reduction function to the values within each group for each
non-key column. This function must accept a numpy array as the first
argument and return a single scalar value. Common function examples are
`numpy.sum`, `numpy.mean`, and `numpy.std`.
For the example grouped table ``obs_by_name`` from above we compute the group means with
the `~astropy.table.groups.TableGroups.aggregate` method::
>>> obs_mean = obs_by_name.groups.aggregate(np.mean) # doctest: +SKIP
WARNING: Cannot aggregate column 'obs_date' [astropy.table.groups]
>>> print(obs_mean) # doctest: +SKIP
name mag_b mag_v
---- ----- ------
M101 15.0 13.725
M31 17.0 17.4
M82 15.7 15.5
It seems the magnitude values were successfully averaged, but what
about the WARNING? Since the ``obs_date`` column is a string-type
array, the `numpy.mean` function failed and raised an exception.
Any time this happens then `~astropy.table.groups.TableGroups.aggregate`
will issue a warning and then
drop that column from the output result. Note that the ``name``
column is one of the ``keys`` used to determine the grouping so
it is automatically ignored from aggregation.
From a grouped table it is possible to select one or more columns on which
to perform the aggregation::
>>> print(obs_by_name['mag_b'].groups.aggregate(np.mean))
mag_b
-----
15.0
17.0
15.7
>>> print(obs_by_name['name', 'mag_v', 'mag_b'].groups.aggregate(np.mean))
name mag_v mag_b
---- ------ -----
M101 13.725 15.0
M31 17.4 17.0
M82 15.5 15.7
A single column of data can be aggregated as well::
>>> c = Column([1, 2, 3, 4, 5, 6], name='a')
>>> key_vals = np.array(['foo', 'bar', 'foo', 'foo', 'qux', 'qux'])
>>> cg = c.group_by(key_vals)
>>> cg_sums = cg.groups.aggregate(np.sum)
>>> for key, cg_sum in zip(cg.groups.keys, cg_sums):
... print('Sum for {0} = {1}'.format(key, cg_sum))
...
Sum for bar = 2
Sum for foo = 8
Sum for qux = 11
If the specified function has a `numpy.ufunc.reduceat` method, this will be called instead.
This can improve the performance by a factor of 10 to 100 (or more) for large unmasked
tables or columns with many relatively small groups. It also allows for the use of
certain numpy functions which normally take more than one input array but also work as
reduction functions, like `numpy.add`. The numpy functions which should take advantage of
using `numpy.ufunc.reduceat` include:
`numpy.add`, `numpy.arctan2`, `numpy.bitwise_and`, `numpy.bitwise_or`, `numpy.bitwise_xor`,
`numpy.copysign`, `numpy.divide`, `numpy.equal`, `numpy.floor_divide`, `numpy.fmax`,
`numpy.fmin`, `numpy.fmod`, `numpy.greater_equal`, `numpy.greater`, `numpy.hypot`,
`numpy.left_shift`, `numpy.less_equal`, `numpy.less`, `numpy.logaddexp2`,
`numpy.logaddexp`, `numpy.logical_and`, `numpy.logical_or`, `numpy.logical_xor`,
`numpy.maximum`, `numpy.minimum`, `numpy.mod`, `numpy.multiply`, `numpy.not_equal`,
`numpy.power`, `numpy.remainder`, `numpy.right_shift`, `numpy.subtract` and `numpy.true_divide`.
As special cases `numpy.sum` and `numpy.mean` are substituted with their
respective reduceat methods.
Filtering
~~~~~~~~~~
Table groups can be filtered by means of the
`~astropy.table.groups.TableGroups.filter` method. This is done by
supplying a function which is called for each group. The function
which is passed to this method must accept two arguments:
- ``table`` : |Table| object
- ``key_colnames`` : list of columns in ``table`` used as keys for grouping
It must then return either `True` or `False`. As an example, the following
will select all table groups with only positive values in the non-key columns::
>>> def all_positive(table, key_colnames):
... colnames = [name for name in table.colnames if name not in key_colnames]
... for colname in colnames:
... if np.any(table[colname] < 0):
... return False
... return True
An example of using this function is::
>>> t = Table.read(""" a b c
... -2 7.0 0
... -2 5.0 1
... 1 3.0 -5
... 1 -2.0 -6
... 1 1.0 7
... 0 0.0 4
... 3 3.0 5
... 3 -2.0 6
... 3 1.0 7""", format='ascii')
>>> tg = t.group_by('a')
>>> t_positive = tg.groups.filter(all_positive)
>>> for group in t_positive.groups:
... print(group)
... print('')
...
a b c
--- --- ---
-2 7.0 0
-2 5.0 1
<BLANKLINE>
a b c
--- --- ---
0 0.0 4
As can be seen only the groups with ``a == -2`` and ``a == 0`` have all positive values
in the non-key columns, so those are the ones that are selected.
Likewise a grouped column can be filtered with the
`~astropy.table.groups.ColumnGroups.filter`, method but in this case the filtering
function takes only a single argument which is the column group. It still must return
either `True` or `False`. For example::
def all_positive(column):
if np.any(column < 0):
return False
return True
.. _table_binning:
Binning
^^^^^^^
A common tool in analysis is to bin a table based on some reference value.
Examples:
- Photometry of a binary star in several bands taken over a
span of time which should be binned by orbital phase.
- Reducing the sampling density for a table by combining
100 rows at a time.
- Unevenly sampled historical data which should binned to
four points per year.
All of these examples of binning a table can be easily accomplished using
`grouped operations`_. The examples in that section are focused on the
case of discrete key values such as the name of a source. In this
section we show a simple yet powerful way of applying grouped operations to
accomplish binning on key values such as time, phase or row number.
The common theme in all these cases is to convert the key value array into
a new float- or int-valued array whose values are identical for rows in the same
output bin. As an example, generate a fake light curve::
>>> year = np.linspace(2000.0, 2010.0, 200) # 200 observations over 10 years
>>> period = 1.811
>>> y0 = 2005.2
>>> mag = 14.0 + 1.2 * np.sin(2 * np.pi * (year - y0) / period)
>>> phase = ((year - y0) / period) % 1.0
>>> dat = Table([year, phase, mag], names=['year', 'phase', 'mag'])
Now make an array that will be used for binning the data by 0.25 year
intervals::
>>> year_bin = np.trunc(year / 0.25)
This has the property that all samples in each 0.25 year bin have the same
value of ``year_bin``. Think of ``year_bin`` as the bin number for ``year``.
Then do the binning by grouping and immediately aggregating with ``np.mean``.
>>> dat_grouped = dat.group_by(year_bin)
>>> dat_binned = dat_grouped.groups.aggregate(np.mean)
Then one might plot the results with ``plt.plot(dat_binned['year'], dat_binned['mag'],
'.')``. Alternately one could bin into 10 phase bins::
>>> phase_bin = np.trunc(phase / 0.1)
>>> dat_grouped = dat.group_by(phase_bin)
>>> dat_binned = dat_grouped.groups.aggregate(np.mean)
This time plot with ``plt.plot(dat_binned['phase'], dat_binned['mag'])``.
.. _stack-vertically:
Stack vertically
^^^^^^^^^^^^^^^^^^^^
The |Table| class supports stacking tables vertically with the
`~astropy.table.vstack` function. This process is also commonly known as
concatenating or appending tables in the row direction. It corresponds roughly
to the `numpy.vstack` function.
For example, suppose one has two tables of observations with several
column names in common::
>>> from astropy.table import Table, vstack
>>> obs1 = Table.read("""name obs_date mag_b logLx
... M31 2012-01-02 17.0 42.5
... M82 2012-10-29 16.2 43.5
... M101 2012-10-31 15.1 44.5""", format='ascii')
>>> obs2 = Table.read("""name obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-30 45.0""", format='ascii')
Now we can stack these two tables::
>>> print(vstack([obs1, obs2]))
name obs_date mag_b logLx
------- ---------- ----- -----
M31 2012-01-02 17.0 42.5
M82 2012-10-29 16.2 43.5
M101 2012-10-31 15.1 44.5
NGC3516 2011-11-11 -- 42.1
M31 1999-01-05 -- 43.1
M82 2012-10-30 -- 45.0
Notice that the ``obs2`` table is missing the ``mag_b`` column, so in the stacked output
table those values are marked as missing. This is the default behavior and corresponds to
``join_type='outer'``. There are two other allowed values for the ``join_type`` argument,
``'inner'`` and ``'exact'``::
>>> print(vstack([obs1, obs2], join_type='inner'))
name obs_date logLx
------- ---------- -----
M31 2012-01-02 42.5
M82 2012-10-29 43.5
M101 2012-10-31 44.5
NGC3516 2011-11-11 42.1
M31 1999-01-05 43.1
M82 2012-10-30 45.0
>>> print(vstack([obs1, obs2], join_type='exact')) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TableMergeError: Inconsistent columns in input arrays (use 'inner'
or 'outer' join_type to allow non-matching columns)
In the case of ``join_type='inner'``, only the common columns (the intersection) are
present in the output table. When ``join_type='exact'`` is specified then
`~astropy.table.vstack` requires that all the input tables
have exactly the same column names.
More than two tables can be stacked by supplying a list of table objects::
>>> obs3 = Table.read("""name obs_date mag_b logLx
... M45 2012-02-03 15.0 40.5""", format='ascii')
>>> print(vstack([obs1, obs2, obs3]))
name obs_date mag_b logLx
------- ---------- ----- -----
M31 2012-01-02 17.0 42.5
M82 2012-10-29 16.2 43.5
M101 2012-10-31 15.1 44.5
NGC3516 2011-11-11 -- 42.1
M31 1999-01-05 -- 43.1
M82 2012-10-30 -- 45.0
M45 2012-02-03 15.0 40.5
See also the sections on `Merging metadata`_ and `Merging column
attributes`_ for details on how these characteristics of the input tables are merged in
the single output table. Note also that you can use a single table row instead of a
full table as one of the inputs.
.. _stack-horizontally:
Stack horizontally
^^^^^^^^^^^^^^^^^^^^^
The |Table| class supports stacking tables horizontally (in the column-wise direction) with the
`~astropy.table.hstack` function. It corresponds roughly
to the `numpy.hstack` function.
For example, suppose one has the following two tables::
>>> from astropy.table import Table, hstack
>>> t1 = Table.read("""a b c
... 1 foo 1.4
... 2 bar 2.1
... 3 baz 2.8""", format='ascii')
>>> t2 = Table.read("""d e
... ham eggs
... spam toast""", format='ascii')
Now we can stack these two tables horizontally::
>>> print(hstack([t1, t2]))
a b c d e
--- --- --- ---- -----
1 foo 1.4 ham eggs
2 bar 2.1 spam toast
3 baz 2.8 -- --
As with `~astropy.table.vstack`, there is an optional ``join_type`` argument
that can take values ``'inner'``, ``'exact'``, and ``'outer'``. The default is
``'outer'``, which effectively takes the union of available rows and masks out any missing
values. This is illustrated in the example above. The other options give the
intersection of rows, where ``'exact'`` requires that all tables have exactly the same
number of rows::
>>> print(hstack([t1, t2], join_type='inner'))
a b c d e
--- --- --- ---- -----
1 foo 1.4 ham eggs
2 bar 2.1 spam toast
>>> print(hstack([t1, t2], join_type='exact')) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TableMergeError: Inconsistent number of rows in input arrays (use 'inner' or
'outer' join_type to allow non-matching rows)
More than two tables can be stacked by supplying a list of table objects. The example
below also illustrates the behavior when there is a conflict in the input column names
(see the section on `Column renaming`_ for details)::
>>> t3 = Table.read("""a b
... M45 2012-02-03""", format='ascii')
>>> print(hstack([t1, t2, t3]))
a_1 b_1 c d e a_3 b_3
--- --- --- ---- ----- --- ----------
1 foo 1.4 ham eggs M45 2012-02-03
2 bar 2.1 spam toast -- --
3 baz 2.8 -- -- -- --
The metadata from the input tables is merged by the process described in the `Merging
metadata`_ section. Note also that you can use a single table row instead of a
full table as one of the inputs.
.. _table-join:
Join
^^^^^^^^^^^^^^
The |Table| class supports the `database join <http://en.wikipedia.org/wiki/Join_(SQL)>`_
operation. This provides a flexible and powerful way to combine tables based on the
values in one or more key columns.
For example, suppose one has two tables of observations, the first with B and V magnitudes
and the second with X-ray luminosities of an overlapping (but not identical) sample::
>>> from astropy.table import Table, join
>>> optical = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> xray = Table.read(""" name obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-29 45.0""", format='ascii')
The |join| method allows one to merge these two tables into a single table based on
matching values in the "key columns". By default the key columns are the set of columns
that are common to both tables. In this case the key columns are ``name`` and
``obs_date``. We can find all the observations of the same object on the same date as
follows::
>>> opt_xray = join(optical, xray)
>>> print(opt_xray)
name obs_date mag_b mag_v logLx
---- ---------- ----- ----- -----
M82 2012-10-29 16.2 15.2 45.0
We can perform the match only by ``name`` by providing the ``keys`` argument, which can be
either a single column name or a list of column names::
>>> print(join(optical, xray, keys='name'))
name obs_date_1 mag_b mag_v obs_date_2 logLx
---- ---------- ----- ----- ---------- -----
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
This output table has all observations that have both optical and X-ray data for an object
(M31 and M82). Notice that since the ``obs_date`` column occurs in both tables it has
been split into two columns, ``obs_date_1`` and ``obs_date_2``. The values are taken from
the "left" (``optical``) and "right" (``xray``) tables, respectively.
Different join options
~~~~~~~~~~~~~~~~~~~~~~
The table joins so far are known as "inner" joins and represent the strict intersection of
the two tables on the key columns.
If one wants to make a new table which has *every* row from the left table and includes
matching values from the right table when available, this is known as a left join::
>>> print(join(optical, xray, join_type='left'))
name obs_date mag_b mag_v logLx
---- ---------- ----- ----- -----
M101 2012-10-31 15.1 15.5 --
M31 2012-01-02 17.0 16.0 --
M82 2012-10-29 16.2 15.2 45.0
Two of the observations do not have X-ray data, as indicated by the ``--`` in the table.
When there are any missing values the output will be a masked table (see
:ref:`masking_and_missing_values` for more information). You might be
surprised that there is no X-ray data for M31 in the output. Remember that the default
matching key includes both ``name`` and ``obs_date``. Specifying the key as only the
``name`` column gives::
>>> print(join(optical, xray, join_type='left', keys='name'))
name obs_date_1 mag_b mag_v obs_date_2 logLx
---- ---------- ----- ----- ---------- -----
M101 2012-10-31 15.1 15.5 -- --
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
Likewise one can construct a new table with every row of the right table and matching left
values (when available) using ``join_type='right'``.
Finally, to make a table with the union of rows from both tables do an "outer" join::
>>> print(join(optical, xray, join_type='outer'))
name obs_date mag_b mag_v logLx
------- ---------- ----- ----- -----
M101 2012-10-31 15.1 15.5 --
M31 1999-01-05 -- -- 43.1
M31 2012-01-02 17.0 16.0 --
M82 2012-10-29 16.2 15.2 45.0
NGC3516 2011-11-11 -- -- 42.1
Non-identical key column names
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The |join| function requires the key column names to be identical in the
two tables. However, in the following one table has a ``'name'`` column
while the other has an ``'obj_id'`` column::
>>> optical = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> xray_1 = Table.read(""" obj_id obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-29 45.0""", format='ascii')
In order to perform a match based on the names of the objects, one has to
temporarily rename one of the columns mentioned above, right before creating
the new table::
>>> xray_1.rename_column('obj_id', 'name')
>>> opt_xray_1 = join(optical, xray_1, keys='name')
>>> xray_1.rename_column('name', 'obj_id')
>>> print(opt_xray_1)
name obs_date_1 mag_b mag_v obs_date_2 logLx
---- ---------- ----- ----- ---------- -----
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
The original ``xray_1`` table remains unchanged after the operation::
>>> print(xray_1)
obj_id obs_date logLx
------- ---------- -----
NGC3516 2011-11-11 42.1
M31 1999-01-05 43.1
M82 2012-10-29 45.0
Identical key values
~~~~~~~~~~~~~~~~~~~~
The |Table| join operation works even if there are multiple rows with identical key
values. For example the following tables have multiple rows for the key column ``x``::
>>> from astropy.table import Table, join
>>> left = Table([[0, 1, 1, 2], ['L1', 'L2', 'L3', 'L4']], names=('key', 'L'))
>>> right = Table([[1, 1, 2, 4], ['R1', 'R2', 'R3', 'R4']], names=('key', 'R'))
>>> print(left)
key L
--- ---
0 L1
1 L2
1 L3
2 L4
>>> print(right)
key R
--- ---
1 R1
1 R2
2 R3
4 R4
Doing an outer join on these tables shows that what is really happening is a `Cartesian
product <http://en.wikipedia.org/wiki/Cartesian_product>`_. For each matching key, every
combination of the left and right tables is represented. When there is no match in either
the left or right table, the corresponding column values are designated as missing.
.. doctest-skip:: win32
>>> print(join(left, right, join_type='outer'))
key L R
--- --- ---
0 L1 --
1 L2 R1
1 L2 R2
1 L3 R1
1 L3 R2
2 L4 R3
4 -- R4
.. note::
The output table is sorted on the key columns, but when there are rows with identical
keys the output order in the non-key columns is not guaranteed to be identical across
installations. In the example above the order within the four rows with ``key == 1``
can vary.
An inner join is the same but only returns rows where there is a key match in both the
left and right tables:
.. doctest-skip:: win32
>>> print(join(left, right, join_type='inner'))
key L R
--- --- ---
1 L2 R1
1 L2 R2
1 L3 R1
1 L3 R2
2 L4 R3
Conflicts in the input table names are handled by the process described in the section on
`Column renaming`_. See also the sections on `Merging metadata`_ and `Merging column
attributes`_ for details on how these characteristics of the input tables are merged in
the single output table.
Merging details
^^^^^^^^^^^^^^^^^^^^
When combining two or more tables there is the need to merge certain
characteristics in the inputs and potentially resolve conflicts. This
section describes the process.
Column renaming
~~~~~~~~~~~~~~~~~
In cases where the input tables have conflicting column names, there
is a mechanism to generate unique output column names. There are two
keyword arguments that control the renaming behavior:
``table_names``
Two-element list of strings that provide a name for the tables being joined.
By default this is ``['1', '2', ...]``, where the numbers correspond to
the input tables.
``uniq_col_name``
String format specifier with a default value of ``'{col_name}_{table_name}'``.
This is most easily understood by example using the ``optical`` and ``xray`` tables
in the |join| example defined previously::
>>> print(join(optical, xray, keys='name',
... table_names=['OPTICAL', 'XRAY'],
... uniq_col_name='{table_name}_{col_name}'))
name OPTICAL_obs_date mag_b mag_v XRAY_obs_date logLx
---- ---------------- ----- ----- ------------- -----
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
Merging metadata
~~~~~~~~~~~~~~~~~~~
|Table| objects can have associated metadata:
- ``Table.meta``: table-level metadata as an ordered dictionary
- ``Column.meta``: per-column metadata as an ordered dictionary
The table operations described here handle the task of merging the metadata in the input
tables into a single output structure. Because the metadata can be arbitrarily complex
there is no unique way to do the merge. The current implementation uses a simple
recursive algorithm with four rules:
- `dict` elements are merged by keys
- Conflicting `list` or `tuple` elements are concatenated
- Conflicting `dict` elements are merged by recursively calling the merge function
- Conflicting elements that are not both `list`, `tuple`, or `dict` will follow the following rules:
- If both metadata values are identical, the output is set to this value
- If one of the conflicting metadata values is `None`, the other value is picked
- If both metadata values are different and neither is `None`, the one for the last table in the list is picked
By default, a warning is emitted in the last case (both metadata values are not
`None`). The warning can be silenced or made into an exception using the
``metadata_conflicts`` argument to :func:`~astropy.table.hstack`,
:func:`~astropy.table.vstack`, or
:func:`~astropy.table.join`. The ``metadata_conflicts`` option can be set to:
- ``'silent'`` - no warning is emitted, the value for the last table is silently picked
- ``'warn'`` - a warning is emitted, the value for the last table is picked
- ``'error'`` - an exception is raised
The default strategies for merging metadata can be augmented or customized by
defining subclasses of the `~astropy.utils.metadata.MergeStrategy` base class.
In most cases one also will use the
`~astropy.utils.metadata.enable_merge_strategies` for enable the custom
strategies. The linked documentation strings provide details.
Merging column attributes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In addition to the table and column ``meta`` attributes, the column attributes ``unit``,
``format``, and ``description`` are merged by going through the input tables in
order and taking the first value which is defined (i.e. is not None). For example::
>>> from astropy.table import Column, Table, vstack
>>> col1 = Column([1], name='a')
>>> col2 = Column([2], name='a', unit='cm')
>>> col3 = Column([3], name='a', unit='m')
>>> t1 = Table([col1])
>>> t2 = Table([col2])
>>> t3 = Table([col3])
>>> out = vstack([t1, t2, t3]) # doctest: +SKIP
WARNING: MergeConflictWarning: In merged column 'a' the 'unit' attribute does
not match (cm != m). Using m for merged output [astropy.table.operations]
>>> out['a'].unit # doctest: +SKIP
Unit("m")
The rules for merging are as for `Merging metadata`_, and the
``metadata_conflicts`` option also controls the merging of column attributes.
.. _unique-rows:
Unique rows
^^^^^^^^^^^
Sometimes it makes sense to use only rows with unique key columns or even
fully unique rows from a table. This can be done using the above described
:func:`~astropy.table.Table.group_by` method and ``groups`` attribute, or
with the `~astropy.table.unique` convenience function. The
`~astropy.table.unique` function returns with a sorted table containing the
first row for each unique ``keys`` column value. If no ``keys`` is provided
it returns with a sorted table containing all the fully unique rows.
A simple example is a list of objects with photometry from various observing
runs. Using ``'name'`` as the only ``keys``, it returns with the first
occurrence of each of the three targets::
>>> from astropy import table
>>> obs = table.Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 17.5
... M82 2012-02-14 16.2 14.5
... M101 2012-01-02 15.1 13.5
... M31 2012-01-02 17.1 17.4
... M101 2012-01-02 15.1 13.5
... M82 2012-02-14 16.2 14.5
... M31 2012-02-14 16.9 17.3
... M82 2012-02-14 15.2 15.5
... M101 2012-02-14 15.0 13.6
... M82 2012-03-26 15.7 16.5
... M101 2012-03-26 15.1 13.5
... M101 2012-03-26 14.8 14.3
... """, format='ascii')
>>> unique_by_name = table.unique(obs, keys='name')
>>> print(unique_by_name)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M31 2012-01-02 17.0 17.5
M82 2012-02-14 16.2 14.5
Using multiple columns as ``keys``::
>>> unique_by_name_date = table.unique(obs, keys=['name', 'obs_date'])
>>> print(unique_by_name_date)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M31 2012-01-02 17.0 17.5
M31 2012-02-14 16.9 17.3
M82 2012-02-14 16.2 14.5
M82 2012-03-26 15.7 16.5
|